| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file testGaussianFactorGraphB.cpp |
| 14 | * @brief Unit tests for Linear Factor Graph |
| 15 | * @author Christian Potthast |
| 16 | **/ |
| 17 | |
| 18 | #include <tests/smallExample.h> |
| 19 | #include <gtsam/inference/Symbol.h> |
| 20 | #include <gtsam/linear/GaussianBayesNet.h> |
| 21 | #include <gtsam/linear/GaussianBayesTree.h> |
| 22 | #include <gtsam/linear/GaussianFactorGraph.h> |
| 23 | #include <gtsam/base/numericalDerivative.h> |
| 24 | #include <gtsam/base/Matrix.h> |
| 25 | #include <gtsam/base/Testable.h> |
| 26 | |
| 27 | #include <CppUnitLite/TestHarness.h> |
| 28 | |
| 29 | #include <string.h> |
| 30 | #include <iostream> |
| 31 | |
| 32 | using namespace std; |
| 33 | using namespace gtsam; |
| 34 | using namespace example; |
| 35 | |
| 36 | double tol=1e-5; |
| 37 | |
| 38 | using symbol_shorthand::X; |
| 39 | using symbol_shorthand::L; |
| 40 | |
| 41 | static auto kUnit2 = noiseModel::Unit::Create(dim: 2); |
| 42 | |
| 43 | /* ************************************************************************* */ |
| 44 | TEST( GaussianFactorGraph, equals ) { |
| 45 | |
| 46 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 47 | GaussianFactorGraph fg2 = createGaussianFactorGraph(); |
| 48 | EXPECT(fg.equals(fg2)); |
| 49 | } |
| 50 | |
| 51 | /* ************************************************************************* */ |
| 52 | TEST( GaussianFactorGraph, error ) { |
| 53 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 54 | VectorValues cfg = createZeroDelta(); |
| 55 | |
| 56 | // note the error is the same as in testNonlinearFactorGraph as a |
| 57 | // zero delta config in the linear graph is equivalent to noisy in |
| 58 | // non-linear, which is really linear under the hood |
| 59 | double actual = fg.error(x: cfg); |
| 60 | DOUBLES_EQUAL( 5.625, actual, 1e-9 ); |
| 61 | } |
| 62 | |
| 63 | /* ************************************************************************* */ |
| 64 | TEST(GaussianFactorGraph, eliminateOne_x1) { |
| 65 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 66 | |
| 67 | GaussianConditional::shared_ptr conditional; |
| 68 | auto result = fg.eliminatePartialSequential(ordering: Ordering{X(j: 1)}); |
| 69 | conditional = result.first->front(); |
| 70 | |
| 71 | // create expected Conditional Gaussian |
| 72 | Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I; |
| 73 | Vector d = Vector2(-0.133333, -0.0222222); |
| 74 | GaussianConditional expected(X(j: 1), 15 * d, R11, L(j: 1), S12, X(j: 2), S13); |
| 75 | |
| 76 | EXPECT(assert_equal(expected, *conditional, tol)); |
| 77 | } |
| 78 | |
| 79 | /* ************************************************************************* */ |
| 80 | TEST(GaussianFactorGraph, eliminateOne_x2) { |
| 81 | const Ordering ordering{X(j: 2), L(j: 1), X(j: 1)}; |
| 82 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 83 | auto actual = EliminateQR(factors: fg, keys: Ordering{X(j: 2)}).first; |
| 84 | |
| 85 | // create expected Conditional Gaussian |
| 86 | double sigma = 0.0894427; |
| 87 | Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.2 * I, S13 = -0.8 * I; |
| 88 | Vector d = Vector2(0.2, -0.14) / sigma; |
| 89 | GaussianConditional expected(X(j: 2), d, R11, L(j: 1), S12, X(j: 1), S13, kUnit2); |
| 90 | |
| 91 | EXPECT(assert_equal(expected, *actual, tol)); |
| 92 | } |
| 93 | |
| 94 | /* ************************************************************************* */ |
| 95 | TEST(GaussianFactorGraph, eliminateOne_l1) { |
| 96 | const Ordering ordering{L(j: 1), X(j: 1), X(j: 2)}; |
| 97 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 98 | auto actual = EliminateQR(factors: fg, keys: Ordering{L(j: 1)}).first; |
| 99 | |
| 100 | // create expected Conditional Gaussian |
| 101 | double sigma = sqrt(x: 2.0) / 10.; |
| 102 | Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.5 * I, S13 = -0.5 * I; |
| 103 | Vector d = Vector2(-0.1, 0.25) / sigma; |
| 104 | GaussianConditional expected(L(j: 1), d, R11, X(j: 1), S12, X(j: 2), S13, kUnit2); |
| 105 | |
| 106 | EXPECT(assert_equal(expected, *actual, tol)); |
| 107 | } |
| 108 | |
| 109 | /* ************************************************************************* */ |
| 110 | TEST(GaussianFactorGraph, eliminateOne_x1_fast) { |
| 111 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 112 | const auto [conditional, remaining] = EliminateQR(factors: fg, keys: Ordering{X(j: 1)}); |
| 113 | |
| 114 | // create expected Conditional Gaussian |
| 115 | Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I; |
| 116 | Vector d = Vector2(-0.133333, -0.0222222); |
| 117 | GaussianConditional expected(X(j: 1), 15 * d, R11, L(j: 1), S12, X(j: 2), S13, kUnit2); |
| 118 | |
| 119 | // Create expected remaining new factor |
| 120 | JacobianFactor expectedFactor( |
| 121 | L(j: 1), (Matrix(4, 2) << 6.87184, 0, 0, 6.87184, 0, 0, 0, 0).finished(), |
| 122 | X(j: 2), |
| 123 | (Matrix(4, 2) << -5.25494, 0, 0, -5.25494, -7.27607, 0, 0, -7.27607) |
| 124 | .finished(), |
| 125 | (Vector(4) << -1.21268, 1.73817, -0.727607, 1.45521).finished(), |
| 126 | noiseModel::Unit::Create(dim: 4)); |
| 127 | |
| 128 | EXPECT(assert_equal(expected, *conditional, tol)); |
| 129 | EXPECT(assert_equal(expectedFactor, *remaining, tol)); |
| 130 | } |
| 131 | |
| 132 | /* ************************************************************************* */ |
| 133 | TEST(GaussianFactorGraph, eliminateOne_x2_fast) { |
| 134 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 135 | auto actual = EliminateQR(factors: fg, keys: Ordering{X(j: 2)}).first; |
| 136 | |
| 137 | // create expected Conditional Gaussian |
| 138 | double sigma = 0.0894427; |
| 139 | Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.2 * I, S13 = 0.8 * I; |
| 140 | Vector d = Vector2(-0.2, 0.14) / sigma; |
| 141 | GaussianConditional expected(X(j: 2), d, R11, L(j: 1), S12, X(j: 1), S13, kUnit2); |
| 142 | |
| 143 | EXPECT(assert_equal(expected, *actual, tol)); |
| 144 | } |
| 145 | |
| 146 | /* ************************************************************************* */ |
| 147 | TEST(GaussianFactorGraph, eliminateOne_l1_fast) { |
| 148 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 149 | auto actual = EliminateQR(factors: fg, keys: Ordering{L(j: 1)}).first; |
| 150 | |
| 151 | // create expected Conditional Gaussian |
| 152 | double sigma = sqrt(x: 2.0) / 10.; |
| 153 | Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.5 * I, S13 = 0.5 * I; |
| 154 | Vector d = Vector2(0.1, -0.25) / sigma; |
| 155 | GaussianConditional expected(L(j: 1), d, R11, X(j: 1), S12, X(j: 2), S13, kUnit2); |
| 156 | |
| 157 | EXPECT(assert_equal(expected, *actual, tol)); |
| 158 | } |
| 159 | |
| 160 | /* ************************************************************************* */ |
| 161 | TEST(GaussianFactorGraph, copying) { |
| 162 | // Create a graph |
| 163 | GaussianFactorGraph actual = createGaussianFactorGraph(); |
| 164 | |
| 165 | // Copy the graph ! |
| 166 | GaussianFactorGraph copy = actual; |
| 167 | |
| 168 | // now eliminate the copy |
| 169 | GaussianBayesNet actual1 = *copy.eliminateSequential(); |
| 170 | |
| 171 | // Create the same graph, but not by copying |
| 172 | GaussianFactorGraph expected = createGaussianFactorGraph(); |
| 173 | |
| 174 | // and check that original is still the same graph |
| 175 | EXPECT(assert_equal(expected, actual)); |
| 176 | } |
| 177 | |
| 178 | /* ************************************************************************* */ |
| 179 | TEST(GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet) { |
| 180 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 181 | |
| 182 | // render with a given ordering |
| 183 | GaussianBayesNet CBN = *fg.eliminateSequential(); |
| 184 | |
| 185 | // True GaussianFactorGraph |
| 186 | GaussianFactorGraph fg2(CBN); |
| 187 | GaussianBayesNet CBN2 = *fg2.eliminateSequential(); |
| 188 | EXPECT(assert_equal(CBN, CBN2)); |
| 189 | } |
| 190 | |
| 191 | /* ************************************************************************* */ |
| 192 | TEST(GaussianFactorGraph, optimize_Cholesky) { |
| 193 | // create a graph |
| 194 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 195 | |
| 196 | // optimize the graph |
| 197 | VectorValues actual = fg.optimize(function: EliminateCholesky); |
| 198 | |
| 199 | // verify |
| 200 | VectorValues expected = createCorrectDelta(); |
| 201 | EXPECT(assert_equal(expected, actual)); |
| 202 | } |
| 203 | |
| 204 | /* ************************************************************************* */ |
| 205 | TEST( GaussianFactorGraph, optimize_QR ) |
| 206 | { |
| 207 | // create a graph |
| 208 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 209 | |
| 210 | // optimize the graph |
| 211 | VectorValues actual = fg.optimize(function: EliminateQR); |
| 212 | |
| 213 | // verify |
| 214 | VectorValues expected = createCorrectDelta(); |
| 215 | EXPECT(assert_equal(expected,actual)); |
| 216 | } |
| 217 | |
| 218 | /* ************************************************************************* */ |
| 219 | TEST(GaussianFactorGraph, combine) { |
| 220 | // create a test graph |
| 221 | GaussianFactorGraph fg1 = createGaussianFactorGraph(); |
| 222 | |
| 223 | // create another factor graph |
| 224 | GaussianFactorGraph fg2 = createGaussianFactorGraph(); |
| 225 | |
| 226 | // get sizes |
| 227 | size_t size1 = fg1.size(); |
| 228 | size_t size2 = fg2.size(); |
| 229 | |
| 230 | // combine them |
| 231 | fg1.push_back(container: fg2); |
| 232 | |
| 233 | EXPECT(size1 + size2 == fg1.size()); |
| 234 | } |
| 235 | |
| 236 | /* ************************************************************************* */ |
| 237 | // print a vector of ints if needed for debugging |
| 238 | void print(vector<int> v) { |
| 239 | for (size_t k = 0; k < v.size(); k++) cout << v[k] << " " ; |
| 240 | cout << endl; |
| 241 | } |
| 242 | |
| 243 | /* ************************************************************************* */ |
| 244 | TEST(GaussianFactorGraph, createSmoother) { |
| 245 | GaussianFactorGraph fg1 = createSmoother(T: 2); |
| 246 | LONGS_EQUAL(3, fg1.size()); |
| 247 | GaussianFactorGraph fg2 = createSmoother(T: 3); |
| 248 | LONGS_EQUAL(5, fg2.size()); |
| 249 | } |
| 250 | |
| 251 | /* ************************************************************************* */ |
| 252 | double error(const VectorValues& x) { |
| 253 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 254 | return fg.error(x); |
| 255 | } |
| 256 | |
| 257 | /* ************************************************************************* */ |
| 258 | TEST(GaussianFactorGraph, multiplication) { |
| 259 | GaussianFactorGraph A = createGaussianFactorGraph(); |
| 260 | VectorValues x = createCorrectDelta(); |
| 261 | Errors actual = A * x; |
| 262 | Errors expected; |
| 263 | expected.push_back(x: Vector2(-1.0, -1.0)); |
| 264 | expected.push_back(x: Vector2(2.0, -1.0)); |
| 265 | expected.push_back(x: Vector2(0.0, 1.0)); |
| 266 | expected.push_back(x: Vector2(-1.0, 1.5)); |
| 267 | EXPECT(assert_equal(expected, actual)); |
| 268 | } |
| 269 | |
| 270 | /* ************************************************************************* */ |
| 271 | // Extra test on elimination prompted by Michael's email to Frank 1/4/2010 |
| 272 | TEST(GaussianFactorGraph, elimination) { |
| 273 | // Create Gaussian Factor Graph |
| 274 | GaussianFactorGraph fg; |
| 275 | Matrix Ap = I_1x1, An = I_1x1 * -1; |
| 276 | Vector b = (Vector(1) << 0.0).finished(); |
| 277 | SharedDiagonal sigma = noiseModel::Isotropic::Sigma(dim: 1, sigma: 2.0); |
| 278 | fg.emplace_shared<JacobianFactor>(args: X(j: 1), args&: An, args: X(j: 2), args&: Ap, args&: b, args&: sigma); |
| 279 | fg.emplace_shared<JacobianFactor>(args: X(j: 1), args&: Ap, args&: b, args&: sigma); |
| 280 | fg.emplace_shared<JacobianFactor>(args: X(j: 2), args&: Ap, args&: b, args&: sigma); |
| 281 | |
| 282 | // Eliminate |
| 283 | const Ordering ordering{X(j: 1), X(j: 2)}; |
| 284 | GaussianBayesNet bayesNet = *fg.eliminateSequential(); |
| 285 | |
| 286 | // Check matrix |
| 287 | const auto [R, d] = bayesNet.matrix(); |
| 288 | Matrix expected = |
| 289 | (Matrix(2, 2) << 0.707107, -0.353553, 0.0, 0.612372).finished(); |
| 290 | Matrix expected2 = |
| 291 | (Matrix(2, 2) << 0.707107, -0.353553, 0.0, -0.612372).finished(); |
| 292 | EXPECT(assert_equal(expected, R, 1e-6)); |
| 293 | EXPECT(equal_with_abs_tol(expected, R, 1e-6) || |
| 294 | equal_with_abs_tol(expected2, R, 1e-6)); |
| 295 | } |
| 296 | |
| 297 | /* ************************************************************************* */ |
| 298 | // Tests ported from ConstrainedGaussianFactorGraph |
| 299 | /* ************************************************************************* */ |
| 300 | TEST(GaussianFactorGraph, constrained_simple) { |
| 301 | // get a graph with a constraint in it |
| 302 | GaussianFactorGraph fg = createSimpleConstraintGraph(); |
| 303 | EXPECT(hasConstraints(fg)); |
| 304 | |
| 305 | // eliminate and solve |
| 306 | VectorValues actual = fg.eliminateSequential()->optimize(); |
| 307 | |
| 308 | // verify |
| 309 | VectorValues expected = createSimpleConstraintValues(); |
| 310 | EXPECT(assert_equal(expected, actual)); |
| 311 | } |
| 312 | |
| 313 | /* ************************************************************************* */ |
| 314 | TEST(GaussianFactorGraph, constrained_single) { |
| 315 | // get a graph with a constraint in it |
| 316 | GaussianFactorGraph fg = createSingleConstraintGraph(); |
| 317 | EXPECT(hasConstraints(fg)); |
| 318 | |
| 319 | // eliminate and solve |
| 320 | VectorValues actual = fg.eliminateSequential()->optimize(); |
| 321 | |
| 322 | // verify |
| 323 | VectorValues expected = createSingleConstraintValues(); |
| 324 | EXPECT(assert_equal(expected, actual)); |
| 325 | } |
| 326 | |
| 327 | /* ************************************************************************* */ |
| 328 | TEST(GaussianFactorGraph, constrained_multi1) { |
| 329 | // get a graph with a constraint in it |
| 330 | GaussianFactorGraph fg = createMultiConstraintGraph(); |
| 331 | EXPECT(hasConstraints(fg)); |
| 332 | |
| 333 | // eliminate and solve |
| 334 | VectorValues actual = fg.eliminateSequential()->optimize(); |
| 335 | |
| 336 | // verify |
| 337 | VectorValues expected = createMultiConstraintValues(); |
| 338 | EXPECT(assert_equal(expected, actual)); |
| 339 | } |
| 340 | |
| 341 | /* ************************************************************************* */ |
| 342 | |
| 343 | static SharedDiagonal model = noiseModel::Isotropic::Sigma(dim: 2,sigma: 1); |
| 344 | |
| 345 | /* ************************************************************************* */ |
| 346 | TEST(GaussianFactorGraph, replace) |
| 347 | { |
| 348 | SharedDiagonal noise(noiseModel::Isotropic::Sigma(dim: 3, sigma: 1.0)); |
| 349 | |
| 350 | GaussianFactorGraph::sharedFactor f1(new JacobianFactor( |
| 351 | X(j: 1), I_3x3, X(j: 2), I_3x3, Z_3x1, noise)); |
| 352 | GaussianFactorGraph::sharedFactor f2(new JacobianFactor( |
| 353 | X(j: 2), I_3x3, X(j: 3), I_3x3, Z_3x1, noise)); |
| 354 | GaussianFactorGraph::sharedFactor f3(new JacobianFactor( |
| 355 | X(j: 3), I_3x3, X(j: 4), I_3x3, Z_3x1, noise)); |
| 356 | GaussianFactorGraph::sharedFactor f4(new JacobianFactor( |
| 357 | X(j: 5), I_3x3, X(j: 6), I_3x3, Z_3x1, noise)); |
| 358 | |
| 359 | GaussianFactorGraph actual; |
| 360 | actual.push_back(factor: f1); |
| 361 | actual.push_back(factor: f2); |
| 362 | actual.push_back(factor: f3); |
| 363 | actual.replace(index: 0, factor: f4); |
| 364 | |
| 365 | GaussianFactorGraph expected; |
| 366 | expected.push_back(factor: f4); |
| 367 | expected.push_back(factor: f2); |
| 368 | expected.push_back(factor: f3); |
| 369 | |
| 370 | EXPECT(assert_equal(expected, actual)); |
| 371 | } |
| 372 | |
| 373 | /* ************************************************************************* */ |
| 374 | TEST(GaussianFactorGraph, hasConstraints) |
| 375 | { |
| 376 | FactorGraph<GaussianFactor> fgc1 = createMultiConstraintGraph(); |
| 377 | EXPECT(hasConstraints(fgc1)); |
| 378 | |
| 379 | FactorGraph<GaussianFactor> fgc2 = createSimpleConstraintGraph() ; |
| 380 | EXPECT(hasConstraints(fgc2)); |
| 381 | |
| 382 | GaussianFactorGraph fg = createGaussianFactorGraph(); |
| 383 | EXPECT(!hasConstraints(fg)); |
| 384 | } |
| 385 | |
| 386 | #include <gtsam/slam/ProjectionFactor.h> |
| 387 | #include <gtsam/geometry/Pose3.h> |
| 388 | #include <gtsam/sam/RangeFactor.h> |
| 389 | |
| 390 | /* ************************************************************************* */ |
| 391 | TEST( GaussianFactorGraph, conditional_sigma_failure) { |
| 392 | // This system derives from a failure case in DDF in which a Bayes Tree |
| 393 | // has non-unit sigmas for conditionals in the Bayes Tree, which |
| 394 | // should never happen by construction |
| 395 | |
| 396 | // Reason for the failure: using Vector_() is dangerous as having a non-float gets set to zero, resulting in constraints |
| 397 | gtsam::Key xC1 = 0, l32 = 1, l41 = 2; |
| 398 | |
| 399 | // noisemodels at nonlinear level |
| 400 | gtsam::SharedNoiseModel priorModel = noiseModel::Diagonal::Sigmas(sigmas: (Vector(6) << 0.05, 0.05, 3.0, 0.2, 0.2, 0.2).finished()); |
| 401 | gtsam::SharedNoiseModel measModel = kUnit2; |
| 402 | gtsam::SharedNoiseModel elevationModel = noiseModel::Isotropic::Sigma(dim: 1, sigma: 3.0); |
| 403 | |
| 404 | double fov = 60; // degrees |
| 405 | int imgW = 640; // pixels |
| 406 | int imgH = 480; // pixels |
| 407 | gtsam::Cal3_S2::shared_ptr K(new gtsam::Cal3_S2(fov, imgW, imgH)); |
| 408 | |
| 409 | typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor; |
| 410 | |
| 411 | double relElevation = 6; |
| 412 | |
| 413 | Values initValues; |
| 414 | initValues.insert(j: xC1, |
| 415 | val: Pose3(Rot3( |
| 416 | -1., 0.0, 1.2246468e-16, |
| 417 | 0.0, 1., 0.0, |
| 418 | -1.2246468e-16, 0.0, -1.), |
| 419 | Point3(0.511832102, 8.42819594, 5.76841725))); |
| 420 | initValues.insert(j: l32, val: Point3(0.364081507, 6.89766221, -0.231582751) ); |
| 421 | initValues.insert(j: l41, val: Point3(1.61051523, 6.7373052, -0.231582751) ); |
| 422 | |
| 423 | NonlinearFactorGraph factors; |
| 424 | factors.addPrior(key: xC1, |
| 425 | prior: Pose3(Rot3( |
| 426 | -1., 0.0, 1.2246468e-16, |
| 427 | 0.0, 1., 0.0, |
| 428 | -1.2246468e-16, 0.0, -1), |
| 429 | Point3(0.511832102, 8.42819594, 5.76841725)), model: priorModel); |
| 430 | factors.emplace_shared<ProjectionFactor>(args: Point2(333.648615, 98.61535), args&: measModel, args&: xC1, args&: l32, args&: K); |
| 431 | factors.emplace_shared<ProjectionFactor>(args: Point2(218.508, 83.8022039), args&: measModel, args&: xC1, args&: l41, args&: K); |
| 432 | factors.emplace_shared<RangeFactor<Pose3,Point3>>(args&: xC1, args&: l32, args&: relElevation, args&: elevationModel); |
| 433 | factors.emplace_shared<RangeFactor<Pose3,Point3>>(args&: xC1, args&: l41, args&: relElevation, args&: elevationModel); |
| 434 | |
| 435 | // Check that sigmas are correct (i.e., unit) |
| 436 | GaussianFactorGraph lfg = *factors.linearize(linearizationPoint: initValues); |
| 437 | |
| 438 | GaussianBayesTree actBT = *lfg.eliminateMultifrontal(); |
| 439 | |
| 440 | // Check that all sigmas in an unconstrained bayes tree are set to one |
| 441 | for (const auto& [key, clique]: actBT.nodes()) { |
| 442 | GaussianConditional::shared_ptr conditional = clique->conditional(); |
| 443 | //size_t dim = conditional->rows(); |
| 444 | //EXPECT(assert_equal(gtsam::Vector::Ones(dim), conditional->get_model()->sigmas(), tol)); |
| 445 | EXPECT(!conditional->get_model()); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | /* ************************************************************************* */ |
| 450 | int main() { TestResult tr; return TestRegistry::runAllTests(result&: tr);} |
| 451 | /* ************************************************************************* */ |
| 452 | |