| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file EliminateableFactorGraph.h |
| 14 | * @brief Variable elimination algorithms for factor graphs |
| 15 | * @author Richard Roberts |
| 16 | * @date Apr 21, 2013 |
| 17 | */ |
| 18 | |
| 19 | #pragma once |
| 20 | |
| 21 | #include <memory> |
| 22 | #include <cstddef> |
| 23 | #include <functional> |
| 24 | #include <optional> |
| 25 | |
| 26 | #include <gtsam/inference/Ordering.h> |
| 27 | #include <gtsam/inference/VariableIndex.h> |
| 28 | |
| 29 | namespace gtsam { |
| 30 | /// Traits class for eliminateable factor graphs, specifies the types that result from |
| 31 | /// elimination, etc. This must be defined for each factor graph that inherits from |
| 32 | /// EliminateableFactorGraph. |
| 33 | template<class GRAPH> |
| 34 | struct EliminationTraits |
| 35 | { |
| 36 | // Template for deriving: |
| 37 | // typedef MyFactor FactorType; ///< Type of factors in factor graph (e.g. GaussianFactor) |
| 38 | // typedef MyFactorGraphType FactorGraphType; ///< Type of the factor graph (e.g. GaussianFactorGraph) |
| 39 | // typedef MyConditional ConditionalType; ///< Type of conditionals from elimination (e.g. GaussianConditional) |
| 40 | // typedef MyBayesNet BayesNetType; ///< Type of Bayes net from sequential elimination (e.g. GaussianBayesNet) |
| 41 | // typedef MyEliminationTree EliminationTreeType; ///< Type of elimination tree (e.g. GaussianEliminationTree) |
| 42 | // typedef MyBayesTree BayesTreeType; ///< Type of Bayes tree (e.g. GaussianBayesTree) |
| 43 | // typedef MyJunctionTree JunctionTreeType; ///< Type of Junction tree (e.g. GaussianJunctionTree) |
| 44 | // static pair<shared_ptr<ConditionalType>, shared_ptr<FactorType> |
| 45 | // DefaultEliminate( |
| 46 | // const MyFactorGraph& factors, const Ordering& keys); ///< The default dense elimination function |
| 47 | }; |
| 48 | |
| 49 | |
| 50 | /** EliminateableFactorGraph is a base class for factor graphs that contains elimination |
| 51 | * algorithms. Any factor graph holding eliminateable factors can derive from this class to |
| 52 | * expose functions for computing marginals, conditional marginals, doing multifrontal and |
| 53 | * sequential elimination, etc. */ |
| 54 | template<class FACTOR_GRAPH> |
| 55 | class EliminateableFactorGraph |
| 56 | { |
| 57 | private: |
| 58 | typedef EliminateableFactorGraph<FACTOR_GRAPH> This; ///< Typedef to this class. |
| 59 | typedef FACTOR_GRAPH FactorGraphType; ///< Typedef to factor graph type |
| 60 | // Base factor type stored in this graph (private because derived classes will get this from |
| 61 | // their FactorGraph base class) |
| 62 | typedef typename EliminationTraits<FactorGraphType>::FactorType _FactorType; |
| 63 | |
| 64 | public: |
| 65 | /// Typedef to the specific EliminationTraits for this graph |
| 66 | typedef EliminationTraits<FactorGraphType> EliminationTraitsType; |
| 67 | |
| 68 | /// Conditional type stored in the Bayes net produced by elimination |
| 69 | typedef typename EliminationTraitsType::ConditionalType ConditionalType; |
| 70 | |
| 71 | /// Bayes net type produced by sequential elimination |
| 72 | typedef typename EliminationTraitsType::BayesNetType BayesNetType; |
| 73 | |
| 74 | /// Elimination tree type that can do sequential elimination of this graph |
| 75 | typedef typename EliminationTraitsType::EliminationTreeType EliminationTreeType; |
| 76 | |
| 77 | /// Bayes tree type produced by multifrontal elimination |
| 78 | typedef typename EliminationTraitsType::BayesTreeType BayesTreeType; |
| 79 | |
| 80 | /// Junction tree type that can do multifrontal elimination of this graph |
| 81 | typedef typename EliminationTraitsType::JunctionTreeType JunctionTreeType; |
| 82 | |
| 83 | /// The pair of conditional and remaining factor produced by a single dense elimination step on |
| 84 | /// a subgraph. |
| 85 | typedef std::pair<std::shared_ptr<ConditionalType>, std::shared_ptr<_FactorType> > EliminationResult; |
| 86 | |
| 87 | /// The function type that does a single dense elimination step on a subgraph. |
| 88 | typedef std::function<EliminationResult(const FactorGraphType&, const Ordering&)> Eliminate; |
| 89 | |
| 90 | /// Typedef for an optional variable index as an argument to elimination functions |
| 91 | /// It is an optional to a constant reference |
| 92 | typedef std::optional<std::reference_wrapper<const VariableIndex>> OptionalVariableIndex; |
| 93 | |
| 94 | /// Typedef for an optional ordering type |
| 95 | typedef std::optional<Ordering::OrderingType> OptionalOrderingType; |
| 96 | |
| 97 | /** Do sequential elimination of all variables to produce a Bayes net. If an ordering is not |
| 98 | * provided, the ordering provided by COLAMD will be used. |
| 99 | * |
| 100 | * <b> Example - Full Cholesky elimination in COLAMD order: </b> |
| 101 | * \code |
| 102 | * std::shared_ptr<GaussianBayesNet> result = graph.eliminateSequential(EliminateCholesky); |
| 103 | * \endcode |
| 104 | * |
| 105 | * <b> Example - METIS ordering for elimination |
| 106 | * \code |
| 107 | * std::shared_ptr<GaussianBayesNet> result = graph.eliminateSequential(OrderingType::METIS); |
| 108 | * \endcode |
| 109 | * |
| 110 | * <b> Example - Reusing an existing VariableIndex to improve performance, and using COLAMD ordering: </b> |
| 111 | * \code |
| 112 | * VariableIndex varIndex(graph); // Build variable index |
| 113 | * Data data = otherFunctionUsingVariableIndex(graph, varIndex); // Other code that uses variable index |
| 114 | * std::shared_ptr<GaussianBayesNet> result = graph.eliminateSequential(EliminateQR, varIndex, std::nullopt); |
| 115 | * \endcode |
| 116 | * */ |
| 117 | std::shared_ptr<BayesNetType> eliminateSequential( |
| 118 | OptionalOrderingType orderingType = {}, |
| 119 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 120 | OptionalVariableIndex variableIndex = {}) const; |
| 121 | |
| 122 | /** Do sequential elimination of all variables to produce a Bayes net. |
| 123 | * |
| 124 | * <b> Example - Full QR elimination in specified order: |
| 125 | * \code |
| 126 | * std::shared_ptr<GaussianBayesNet> result = graph.eliminateSequential(myOrdering, EliminateQR); |
| 127 | * \endcode |
| 128 | * |
| 129 | * <b> Example - Reusing an existing VariableIndex to improve performance: </b> |
| 130 | * \code |
| 131 | * VariableIndex varIndex(graph); // Build variable index |
| 132 | * Data data = otherFunctionUsingVariableIndex(graph, varIndex); // Other code that uses variable index |
| 133 | * std::shared_ptr<GaussianBayesNet> result = graph.eliminateSequential(myOrdering, EliminateQR, varIndex, std::nullopt); |
| 134 | * \endcode |
| 135 | * */ |
| 136 | std::shared_ptr<BayesNetType> eliminateSequential( |
| 137 | const Ordering& ordering, |
| 138 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 139 | OptionalVariableIndex variableIndex = {}) const; |
| 140 | |
| 141 | /** Do multifrontal elimination of all variables to produce a Bayes tree. If an ordering is not |
| 142 | * provided, the ordering will be computed using either COLAMD or METIS, depending on |
| 143 | * the parameter orderingType (Ordering::COLAMD or Ordering::METIS) |
| 144 | * |
| 145 | * <b> Example - Full Cholesky elimination in COLAMD order: </b> |
| 146 | * \code |
| 147 | * std::shared_ptr<GaussianBayesTree> result = graph.eliminateMultifrontal(EliminateCholesky); |
| 148 | * \endcode |
| 149 | * |
| 150 | * <b> Example - Reusing an existing VariableIndex to improve performance, and using COLAMD ordering: </b> |
| 151 | * \code |
| 152 | * VariableIndex varIndex(graph); // Build variable index |
| 153 | * Data data = otherFunctionUsingVariableIndex(graph, varIndex); // Other code that uses variable index |
| 154 | * std::shared_ptr<GaussianBayesTree> result = graph.eliminateMultifrontal(EliminateQR, {}, varIndex); |
| 155 | * \endcode |
| 156 | * */ |
| 157 | std::shared_ptr<BayesTreeType> eliminateMultifrontal( |
| 158 | OptionalOrderingType orderingType = {}, |
| 159 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 160 | OptionalVariableIndex variableIndex = {}) const; |
| 161 | |
| 162 | /** Do multifrontal elimination of all variables to produce a Bayes tree. If an ordering is not |
| 163 | * provided, the ordering will be computed using either COLAMD or METIS, depending on |
| 164 | * the parameter orderingType (Ordering::COLAMD or Ordering::METIS) |
| 165 | * |
| 166 | * <b> Example - Full QR elimination in specified order: |
| 167 | * \code |
| 168 | * std::shared_ptr<GaussianBayesTree> result = graph.eliminateMultifrontal(EliminateQR, myOrdering); |
| 169 | * \endcode |
| 170 | * */ |
| 171 | std::shared_ptr<BayesTreeType> eliminateMultifrontal( |
| 172 | const Ordering& ordering, |
| 173 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 174 | OptionalVariableIndex variableIndex = {}) const; |
| 175 | |
| 176 | /** Do sequential elimination of some variables, in \c ordering provided, to produce a Bayes net |
| 177 | * and a remaining factor graph. This computes the factorization \f$ p(X) = p(A|B) p(B) \f$, |
| 178 | * where \f$ A = \f$ \c variables, \f$ X \f$ is all the variables in the factor graph, and \f$ |
| 179 | * B = X\backslash A \f$. */ |
| 180 | std::pair<std::shared_ptr<BayesNetType>, std::shared_ptr<FactorGraphType> > |
| 181 | eliminatePartialSequential( |
| 182 | const Ordering& ordering, |
| 183 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 184 | OptionalVariableIndex variableIndex = {}) const; |
| 185 | |
| 186 | /** Do sequential elimination of the given \c variables in an ordering computed by COLAMD to |
| 187 | * produce a Bayes net and a remaining factor graph. This computes the factorization \f$ p(X) |
| 188 | * = p(A|B) p(B) \f$, where \f$ A = \f$ \c variables, \f$ X \f$ is all the variables in the |
| 189 | * factor graph, and \f$ B = X\backslash A \f$. */ |
| 190 | std::pair<std::shared_ptr<BayesNetType>, std::shared_ptr<FactorGraphType> > |
| 191 | eliminatePartialSequential( |
| 192 | const KeyVector& variables, |
| 193 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 194 | OptionalVariableIndex variableIndex = {}) const; |
| 195 | |
| 196 | /** Do multifrontal elimination of some variables, in \c ordering provided, to produce a Bayes |
| 197 | * tree and a remaining factor graph. This computes the factorization \f$ p(X) = p(A|B) p(B) |
| 198 | * \f$, where \f$ A = \f$ \c variables, \f$ X \f$ is all the variables in the factor graph, and |
| 199 | * \f$ B = X\backslash A \f$. */ |
| 200 | std::pair<std::shared_ptr<BayesTreeType>, std::shared_ptr<FactorGraphType> > |
| 201 | eliminatePartialMultifrontal( |
| 202 | const Ordering& ordering, |
| 203 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 204 | OptionalVariableIndex variableIndex = {}) const; |
| 205 | |
| 206 | /** Do multifrontal elimination of the given \c variables in an ordering computed by COLAMD to |
| 207 | * produce a Bayes tree and a remaining factor graph. This computes the factorization \f$ p(X) |
| 208 | * = p(A|B) p(B) \f$, where \f$ A = \f$ \c variables, \f$ X \f$ is all the variables in the |
| 209 | * factor graph, and \f$ B = X\backslash A \f$. */ |
| 210 | std::pair<std::shared_ptr<BayesTreeType>, std::shared_ptr<FactorGraphType> > |
| 211 | eliminatePartialMultifrontal( |
| 212 | const KeyVector& variables, |
| 213 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 214 | OptionalVariableIndex variableIndex = {}) const; |
| 215 | |
| 216 | /** Compute the marginal of the requested variables and return the result as a Bayes net. Uses |
| 217 | * COLAMD marginalization ordering by default |
| 218 | * @param variables Determines the *ordered* variables whose marginal to compute, |
| 219 | * will be ordered in the returned BayesNet as specified. |
| 220 | * @param function Optional dense elimination function. |
| 221 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 222 | * provided one will be computed. |
| 223 | */ |
| 224 | std::shared_ptr<BayesNetType> marginalMultifrontalBayesNet( |
| 225 | const Ordering& variables, |
| 226 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 227 | OptionalVariableIndex variableIndex = {}) const; |
| 228 | |
| 229 | /** Compute the marginal of the requested variables and return the result as a Bayes net. Uses |
| 230 | * COLAMD marginalization ordering by default |
| 231 | * @param variables Determines the variables whose marginal to compute, will be ordered |
| 232 | * using COLAMD; use `Ordering(variables)` to specify the variable ordering. |
| 233 | * @param function Optional dense elimination function. |
| 234 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 235 | * provided one will be computed. |
| 236 | */ |
| 237 | std::shared_ptr<BayesNetType> marginalMultifrontalBayesNet( |
| 238 | const KeyVector& variables, |
| 239 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 240 | OptionalVariableIndex variableIndex = {}) const; |
| 241 | |
| 242 | /** Compute the marginal of the requested variables and return the result as a Bayes net. |
| 243 | * @param variables Determines the *ordered* variables whose marginal to compute, |
| 244 | * will be ordered in the returned BayesNet as specified. |
| 245 | * @param marginalizedVariableOrdering Ordering for the variables being marginalized out, |
| 246 | * i.e. all variables not in \c variables. |
| 247 | * @param function Optional dense elimination function. |
| 248 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 249 | * provided one will be computed. |
| 250 | */ |
| 251 | std::shared_ptr<BayesNetType> marginalMultifrontalBayesNet( |
| 252 | const Ordering& variables, |
| 253 | const Ordering& marginalizedVariableOrdering, |
| 254 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 255 | OptionalVariableIndex variableIndex = {}) const; |
| 256 | |
| 257 | /** Compute the marginal of the requested variables and return the result as a Bayes net. |
| 258 | * @param variables Determines the variables whose marginal to compute, will be ordered |
| 259 | * using COLAMD; use `Ordering(variables)` to specify the variable ordering. |
| 260 | * @param marginalizedVariableOrdering Ordering for the variables being marginalized out, |
| 261 | * i.e. all variables not in \c variables. |
| 262 | * @param function Optional dense elimination function. |
| 263 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 264 | * provided one will be computed. |
| 265 | */ |
| 266 | std::shared_ptr<BayesNetType> marginalMultifrontalBayesNet( |
| 267 | const KeyVector& variables, |
| 268 | const Ordering& marginalizedVariableOrdering, |
| 269 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 270 | OptionalVariableIndex variableIndex = {}) const; |
| 271 | |
| 272 | /** Compute the marginal of the requested variables and return the result as a Bayes tree. Uses |
| 273 | * COLAMD marginalization order by default |
| 274 | * @param variables Determines the *ordered* variables whose marginal to compute, |
| 275 | * will be ordered in the returned BayesNet as specified. |
| 276 | * @param function Optional dense elimination function.. |
| 277 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 278 | * provided one will be computed. */ |
| 279 | std::shared_ptr<BayesTreeType> marginalMultifrontalBayesTree( |
| 280 | const Ordering& variables, |
| 281 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 282 | OptionalVariableIndex variableIndex = {}) const; |
| 283 | |
| 284 | /** Compute the marginal of the requested variables and return the result as a Bayes tree. Uses |
| 285 | * COLAMD marginalization order by default |
| 286 | * @param variables Determines the variables whose marginal to compute, will be ordered |
| 287 | * using COLAMD; use `Ordering(variables)` to specify the variable ordering. |
| 288 | * @param function Optional dense elimination function.. |
| 289 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 290 | * provided one will be computed. */ |
| 291 | std::shared_ptr<BayesTreeType> marginalMultifrontalBayesTree( |
| 292 | const KeyVector& variables, |
| 293 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 294 | OptionalVariableIndex variableIndex = {}) const; |
| 295 | |
| 296 | /** Compute the marginal of the requested variables and return the result as a Bayes tree. |
| 297 | * @param variables Determines the *ordered* variables whose marginal to compute, |
| 298 | * will be ordered in the returned BayesNet as specified. |
| 299 | * @param marginalizedVariableOrdering Ordering for the variables being marginalized out, |
| 300 | * i.e. all variables not in \c variables. |
| 301 | * @param function Optional dense elimination function.. |
| 302 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 303 | * provided one will be computed. */ |
| 304 | std::shared_ptr<BayesTreeType> marginalMultifrontalBayesTree( |
| 305 | const Ordering& variables, |
| 306 | const Ordering& marginalizedVariableOrdering, |
| 307 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 308 | OptionalVariableIndex variableIndex = {}) const; |
| 309 | |
| 310 | /** Compute the marginal of the requested variables and return the result as a Bayes tree. |
| 311 | * @param variables Determines the variables whose marginal to compute, will be ordered |
| 312 | * using COLAMD; use `Ordering(variables)` to specify the variable ordering. |
| 313 | * @param marginalizedVariableOrdering Ordering for the variables being marginalized out, |
| 314 | * i.e. all variables not in \c variables. |
| 315 | * @param function Optional dense elimination function.. |
| 316 | * @param variableIndex Optional pre-computed VariableIndex for the factor graph, if not |
| 317 | * provided one will be computed. */ |
| 318 | std::shared_ptr<BayesTreeType> marginalMultifrontalBayesTree( |
| 319 | const KeyVector& variables, |
| 320 | const Ordering& marginalizedVariableOrdering, |
| 321 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 322 | OptionalVariableIndex variableIndex = {}) const; |
| 323 | |
| 324 | /** Compute the marginal factor graph of the requested variables. */ |
| 325 | std::shared_ptr<FactorGraphType> marginal( |
| 326 | const KeyVector& variables, |
| 327 | const Eliminate& function = EliminationTraitsType::DefaultEliminate, |
| 328 | OptionalVariableIndex variableIndex = {}) const; |
| 329 | |
| 330 | private: |
| 331 | |
| 332 | // Access the derived factor graph class |
| 333 | const FactorGraphType& asDerived() const { return static_cast<const FactorGraphType&>(*this); } |
| 334 | |
| 335 | // Access the derived factor graph class |
| 336 | FactorGraphType& asDerived() { return static_cast<FactorGraphType&>(*this); } |
| 337 | }; |
| 338 | |
| 339 | } |
| 340 | |