| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file Values.h |
| 14 | * @author Richard Roberts |
| 15 | * |
| 16 | * @brief A non-templated config holding any types of Manifold-group elements |
| 17 | * |
| 18 | * Detailed story: |
| 19 | * A values structure is a map from keys to values. It is used to specify the value of a bunch |
| 20 | * of variables in a factor graph. A Values is a values structure which can hold variables that |
| 21 | * are elements on manifolds, not just vectors. It then, as a whole, implements a aggregate type |
| 22 | * which is also a manifold element, and hence supports operations dim, retract, and localCoordinates. |
| 23 | */ |
| 24 | |
| 25 | #pragma once |
| 26 | |
| 27 | #include <utility> |
| 28 | #include <gtsam/nonlinear/Values.h> |
| 29 | |
| 30 | namespace gtsam { |
| 31 | |
| 32 | |
| 33 | /* ************************************************************************* */ |
| 34 | template<class ValueType> |
| 35 | struct _ValuesKeyValuePair { |
| 36 | const Key key; ///< The key |
| 37 | ValueType& value; ///< The value |
| 38 | |
| 39 | _ValuesKeyValuePair(Key _key, ValueType& _value) : key(_key), value(_value) {} |
| 40 | }; |
| 41 | |
| 42 | /* ************************************************************************* */ |
| 43 | template<class ValueType> |
| 44 | struct _ValuesConstKeyValuePair { |
| 45 | const Key key; ///< The key |
| 46 | const ValueType& value; ///< The value |
| 47 | |
| 48 | _ValuesConstKeyValuePair(Key _key, const ValueType& _value) : |
| 49 | key(_key), value(_value) { |
| 50 | } |
| 51 | _ValuesConstKeyValuePair(const _ValuesKeyValuePair<ValueType>& rhs) : |
| 52 | key(rhs.key), value(rhs.value) { |
| 53 | } |
| 54 | }; |
| 55 | |
| 56 | /* ************************************************************************* */ |
| 57 | |
| 58 | // Cast helpers for making _Values[Const]KeyValuePair's from Values::[Const]KeyValuePair |
| 59 | // need to use a struct here for later partial specialization |
| 60 | template<class ValueType, class CastedKeyValuePairType, class KeyValuePairType> |
| 61 | struct ValuesCastHelper { |
| 62 | static CastedKeyValuePairType cast(KeyValuePairType key_value) { |
| 63 | // Static cast because we already checked the type during filtering |
| 64 | return CastedKeyValuePairType(key_value.key, |
| 65 | const_cast<GenericValue<ValueType>&>(static_cast<const GenericValue< |
| 66 | ValueType>&>(key_value.value)).value()); |
| 67 | } |
| 68 | }; |
| 69 | // partial specialized version for ValueType == Value |
| 70 | template<class CastedKeyValuePairType, class KeyValuePairType> |
| 71 | struct ValuesCastHelper<Value, CastedKeyValuePairType, KeyValuePairType> { |
| 72 | static CastedKeyValuePairType cast(KeyValuePairType key_value) { |
| 73 | // Static cast because we already checked the type during filtering |
| 74 | // in this case the casted and keyvalue pair are essentially the same type |
| 75 | // (key, Value&) so perhaps this could be done with just a cast of the key_value? |
| 76 | return CastedKeyValuePairType(key_value.key, key_value.value); |
| 77 | } |
| 78 | }; |
| 79 | // partial specialized version for ValueType == Value |
| 80 | template<class CastedKeyValuePairType, class KeyValuePairType> |
| 81 | struct ValuesCastHelper<const Value, CastedKeyValuePairType, KeyValuePairType> { |
| 82 | static CastedKeyValuePairType cast(KeyValuePairType key_value) { |
| 83 | // Static cast because we already checked the type during filtering |
| 84 | // in this case the casted and keyvalue pair are essentially the same type |
| 85 | // (key, Value&) so perhaps this could be done with just a cast of the key_value? |
| 86 | return CastedKeyValuePairType(key_value.key, key_value.value); |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | /* ************************************************************************* */ |
| 91 | template <class ValueType> |
| 92 | size_t Values::count() const { |
| 93 | size_t i = 0; |
| 94 | for (const auto& [_, value] : values_) { |
| 95 | if (dynamic_cast<const GenericValue<ValueType>*>(value.get())) ++i; |
| 96 | } |
| 97 | return i; |
| 98 | } |
| 99 | |
| 100 | /* ************************************************************************* */ |
| 101 | template <class ValueType> |
| 102 | std::map<Key, ValueType> |
| 103 | Values::(const std::function<bool(Key)>& filterFcn) const { |
| 104 | std::map<Key, ValueType> result; |
| 105 | for (const auto& [key,value] : values_) { |
| 106 | // Check if key matches |
| 107 | if (filterFcn(key)) { |
| 108 | // Check if type matches (typically does as symbols matched with types) |
| 109 | if (auto t = |
| 110 | dynamic_cast<const GenericValue<ValueType>*>(value.get())) |
| 111 | result[key] = t->value(); |
| 112 | } |
| 113 | } |
| 114 | return result; |
| 115 | } |
| 116 | |
| 117 | /* ************************************************************************* */ |
| 118 | template<> |
| 119 | inline bool Values::filterHelper<Value>(const std::function<bool(Key)> filter, |
| 120 | const ConstKeyValuePair& key_value) { |
| 121 | // Filter and check the type |
| 122 | return filter(key_value.key); |
| 123 | } |
| 124 | |
| 125 | /* ************************************************************************* */ |
| 126 | |
| 127 | namespace internal { |
| 128 | |
| 129 | // Check the type and throw exception if incorrect |
| 130 | // Generic version, partially specialized below for various Eigen Matrix types |
| 131 | template <typename ValueType> |
| 132 | struct handle { |
| 133 | ValueType operator()(Key j, const Value* const pointer) { |
| 134 | auto ptr = dynamic_cast<const GenericValue<ValueType>*>(pointer); |
| 135 | if (ptr) { |
| 136 | // value returns a const ValueType&, and the return makes a copy !!!!! |
| 137 | return ptr->value(); |
| 138 | } else { |
| 139 | throw ValuesIncorrectType(j, typeid(*pointer), typeid(ValueType)); |
| 140 | } |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | template <typename MatrixType, bool isDynamic> |
| 145 | struct handle_matrix; |
| 146 | |
| 147 | // Handle dynamic matrices |
| 148 | template <int M, int N> |
| 149 | struct handle_matrix<Eigen::Matrix<double, M, N>, true> { |
| 150 | inline Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) { |
| 151 | auto ptr = dynamic_cast<const GenericValue<Eigen::Matrix<double, M, N>>*>(pointer); |
| 152 | if (ptr) { |
| 153 | // value returns a const Matrix&, and the return makes a copy !!!!! |
| 154 | return ptr->value(); |
| 155 | } else { |
| 156 | // If a fixed matrix was stored, we end up here as well. |
| 157 | throw ValuesIncorrectType(j, typeid(*pointer), typeid(Eigen::Matrix<double, M, N>)); |
| 158 | } |
| 159 | } |
| 160 | }; |
| 161 | |
| 162 | // Handle fixed matrices |
| 163 | template <int M, int N> |
| 164 | struct handle_matrix<Eigen::Matrix<double, M, N>, false> { |
| 165 | inline Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) { |
| 166 | auto ptr = dynamic_cast<const GenericValue<Eigen::Matrix<double, M, N>>*>(pointer); |
| 167 | if (ptr) { |
| 168 | // value returns a const MatrixMN&, and the return makes a copy !!!!! |
| 169 | return ptr->value(); |
| 170 | } else { |
| 171 | Matrix A; |
| 172 | // Check if a dynamic matrix was stored |
| 173 | auto ptr = dynamic_cast<const GenericValue<Eigen::MatrixXd>*>(pointer); |
| 174 | if (ptr) { |
| 175 | A = ptr->value(); |
| 176 | } else { |
| 177 | // Or a dynamic vector |
| 178 | A = handle_matrix<Eigen::VectorXd, true>()(j, pointer); // will throw if not.... |
| 179 | } |
| 180 | // Yes: check size, and throw if not a match |
| 181 | if (A.rows() != M || A.cols() != N) |
| 182 | throw NoMatchFoundForFixed(M, N, A.rows(), A.cols()); |
| 183 | else |
| 184 | return A; // copy but not malloc |
| 185 | } |
| 186 | } |
| 187 | }; |
| 188 | |
| 189 | // Handle matrices |
| 190 | template <int M, int N> |
| 191 | struct handle<Eigen::Matrix<double, M, N>> { |
| 192 | Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) { |
| 193 | return handle_matrix<Eigen::Matrix<double, M, N>, |
| 194 | (M == Eigen::Dynamic || N == Eigen::Dynamic)>()(j, pointer); |
| 195 | } |
| 196 | }; |
| 197 | |
| 198 | // Added this section for compile gtsam python on windows. |
| 199 | // msvc don't deduct the template arguments correctly, due possible bug in msvc. |
| 200 | #ifdef _WIN32 |
| 201 | #if _MSC_VER < 1937 |
| 202 | // Handle dynamic matrices |
| 203 | template <int M, int N> |
| 204 | struct handle_matrix<Eigen::Matrix<double, M, N, 0, M, N>, true> { |
| 205 | inline Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) { |
| 206 | auto ptr = dynamic_cast<const GenericValue<Eigen::Matrix<double, M, N>>*>(pointer); |
| 207 | if (ptr) { |
| 208 | // value returns a const Matrix&, and the return makes a copy !!!!! |
| 209 | return ptr->value(); |
| 210 | } else { |
| 211 | // If a fixed matrix was stored, we end up here as well. |
| 212 | throw ValuesIncorrectType(j, typeid(*pointer), typeid(Eigen::Matrix<double, M, N>)); |
| 213 | } |
| 214 | } |
| 215 | }; |
| 216 | |
| 217 | // Handle fixed matrices |
| 218 | template <int M, int N> |
| 219 | struct handle_matrix<Eigen::Matrix<double, M, N, 0, M, N>, false> { |
| 220 | inline Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) { |
| 221 | auto ptr = dynamic_cast<const GenericValue<Eigen::Matrix<double, M, N>>*>(pointer); |
| 222 | if (ptr) { |
| 223 | // value returns a const MatrixMN&, and the return makes a copy !!!!! |
| 224 | return ptr->value(); |
| 225 | } else { |
| 226 | Matrix A; |
| 227 | // Check if a dynamic matrix was stored |
| 228 | auto ptr = dynamic_cast<const GenericValue<Eigen::MatrixXd>*>(pointer); |
| 229 | if (ptr) { |
| 230 | A = ptr->value(); |
| 231 | } else { |
| 232 | // Or a dynamic vector |
| 233 | A = handle_matrix<Eigen::VectorXd, true>()(j, pointer); // will throw if not.... |
| 234 | } |
| 235 | // Yes: check size, and throw if not a match |
| 236 | if (A.rows() != M || A.cols() != N) |
| 237 | throw NoMatchFoundForFixed(M, N, A.rows(), A.cols()); |
| 238 | else |
| 239 | return A; // copy but not malloc |
| 240 | } |
| 241 | } |
| 242 | }; |
| 243 | |
| 244 | // Handle matrices |
| 245 | template <int M, int N> |
| 246 | struct handle<Eigen::Matrix<double, M, N, 0, M, N>> { |
| 247 | Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) { |
| 248 | return handle_matrix<Eigen::Matrix<double, M, N, 0, M, N>, |
| 249 | (M == Eigen::Dynamic || N == Eigen::Dynamic)>()(j, pointer); |
| 250 | } |
| 251 | }; |
| 252 | #endif // #if _MSC_VER < 1937 |
| 253 | #endif // #ifdef _WIN32 |
| 254 | |
| 255 | } // internal |
| 256 | |
| 257 | /* ************************************************************************* */ |
| 258 | template <typename ValueType> |
| 259 | const ValueType Values::at(Key j) const { |
| 260 | // Find the item |
| 261 | KeyValueMap::const_iterator item = values_.find(x: j); |
| 262 | |
| 263 | // Throw exception if it does not exist |
| 264 | if (item == values_.end()) throw ValuesKeyDoesNotExist("at" , j); |
| 265 | |
| 266 | // Check the type and throw exception if incorrect |
| 267 | // h() split in two lines to avoid internal compiler error (MSVC2017) |
| 268 | auto h = internal::handle<ValueType>(); |
| 269 | return h(j, item->second.get()); |
| 270 | } |
| 271 | |
| 272 | /* ************************************************************************* */ |
| 273 | template<typename ValueType> |
| 274 | const ValueType * Values::exists(Key j) const { |
| 275 | // Find the item |
| 276 | KeyValueMap::const_iterator item = values_.find(x: j); |
| 277 | |
| 278 | if(item != values_.end()) { |
| 279 | const Value* value = item->second.get(); |
| 280 | // dynamic cast the type and throw exception if incorrect |
| 281 | auto ptr = dynamic_cast<const GenericValue<ValueType>*>(value); |
| 282 | if (ptr) { |
| 283 | return &ptr->value(); |
| 284 | } else { |
| 285 | // NOTE(abe): clang warns about potential side effects if done in typeid |
| 286 | throw ValuesIncorrectType(j, typeid(*value), typeid(ValueType)); |
| 287 | } |
| 288 | } else { |
| 289 | return nullptr; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | /* ************************************************************************* */ |
| 294 | |
| 295 | // insert a templated value |
| 296 | template<typename ValueType> |
| 297 | void Values::insert(Key j, const ValueType& val) { |
| 298 | insert(j, val: static_cast<const Value&>(GenericValue<ValueType>(val))); |
| 299 | } |
| 300 | |
| 301 | // partial specialization to insert an expression involving unary operators |
| 302 | template <typename UnaryOp, typename ValueType> |
| 303 | void Values::insert(Key j, const Eigen::CwiseUnaryOp<UnaryOp, const ValueType>& val) { |
| 304 | insert(j, val.eval()); |
| 305 | } |
| 306 | |
| 307 | // partial specialization to insert an expression involving binary operators |
| 308 | template <typename BinaryOp, typename ValueType1, typename ValueType2> |
| 309 | void Values::insert(Key j, const Eigen::CwiseBinaryOp<BinaryOp, const ValueType1, const ValueType2>& val) { |
| 310 | insert(j, val.eval()); |
| 311 | } |
| 312 | |
| 313 | // update with templated value |
| 314 | template <typename ValueType> |
| 315 | void Values::update(Key j, const ValueType& val) { |
| 316 | update(j, val: static_cast<const Value&>(GenericValue<ValueType>(val))); |
| 317 | } |
| 318 | |
| 319 | // partial specialization to update with an expression involving unary operators |
| 320 | template <typename UnaryOp, typename ValueType> |
| 321 | void Values::update(Key j, const Eigen::CwiseUnaryOp<UnaryOp, const ValueType>& val) { |
| 322 | update(j, val.eval()); |
| 323 | } |
| 324 | |
| 325 | // partial specialization to update with an expression involving binary operators |
| 326 | template <typename BinaryOp, typename ValueType1, typename ValueType2> |
| 327 | void Values::update(Key j, const Eigen::CwiseBinaryOp<BinaryOp, const ValueType1, const ValueType2>& val) { |
| 328 | update(j, val.eval()); |
| 329 | } |
| 330 | |
| 331 | // insert_or_assign with templated value |
| 332 | template <typename ValueType> |
| 333 | void Values::insert_or_assign(Key j, const ValueType& val) { |
| 334 | insert_or_assign(j, val: static_cast<const Value&>(GenericValue<ValueType>(val))); |
| 335 | } |
| 336 | |
| 337 | template <typename UnaryOp, typename ValueType> |
| 338 | void Values::insert_or_assign(Key j, const Eigen::CwiseUnaryOp<UnaryOp, const ValueType>& val) { |
| 339 | insert_or_assign(j, val.eval()); |
| 340 | } |
| 341 | |
| 342 | template <typename BinaryOp, typename ValueType1, typename ValueType2> |
| 343 | void Values::insert_or_assign(Key j, const Eigen::CwiseBinaryOp<BinaryOp, const ValueType1, const ValueType2>& val) { |
| 344 | insert_or_assign(j, val.eval()); |
| 345 | } |
| 346 | |
| 347 | } |
| 348 | |