| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file SmartProjectionPoseFactorRollingShutter.h |
| 14 | * @brief Smart projection factor on poses modeling rolling shutter effect with |
| 15 | * given readout time |
| 16 | * @author Luca Carlone |
| 17 | */ |
| 18 | |
| 19 | #pragma once |
| 20 | |
| 21 | #include <gtsam/geometry/CameraSet.h> |
| 22 | #include <gtsam/slam/SmartProjectionFactor.h> |
| 23 | #include <gtsam_unstable/dllexport.h> |
| 24 | |
| 25 | namespace gtsam { |
| 26 | /** |
| 27 | * |
| 28 | * @ingroup slam |
| 29 | * |
| 30 | * If you are using the factor, please cite: |
| 31 | * L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, |
| 32 | * Eliminating conditionally independent sets in factor graphs: |
| 33 | * a unifying perspective based on smart factors, |
| 34 | * Int. Conf. on Robotics and Automation (ICRA), 2014. |
| 35 | */ |
| 36 | |
| 37 | /** |
| 38 | * This factor optimizes two consecutive poses of the body assuming a rolling |
| 39 | * shutter model of the camera with given readout time. The factor requires that |
| 40 | * values contain (for each pixel observation) two consecutive camera poses from |
| 41 | * which the pixel observation pose can be interpolated. |
| 42 | * @ingroup slam |
| 43 | */ |
| 44 | template <class CAMERA> |
| 45 | class SmartProjectionPoseFactorRollingShutter |
| 46 | : public SmartProjectionFactor<CAMERA> { |
| 47 | private: |
| 48 | typedef SmartProjectionFactor<CAMERA> Base; |
| 49 | typedef SmartProjectionPoseFactorRollingShutter<CAMERA> This; |
| 50 | typedef typename CAMERA::CalibrationType CALIBRATION; |
| 51 | typedef typename CAMERA::Measurement MEASUREMENT; |
| 52 | typedef typename CAMERA::MeasurementVector MEASUREMENTS; |
| 53 | |
| 54 | protected: |
| 55 | /// The keys of the pose of the body (with respect to an external world |
| 56 | /// frame): two consecutive poses for each observation |
| 57 | std::vector<std::pair<Key, Key>> world_P_body_key_pairs_; |
| 58 | |
| 59 | /// interpolation factor (one for each observation) to interpolate between |
| 60 | /// pair of consecutive poses |
| 61 | std::vector<double> alphas_; |
| 62 | |
| 63 | /// one or more cameras taking observations (fixed poses wrt body + fixed |
| 64 | /// intrinsics) |
| 65 | std::shared_ptr<typename Base::Cameras> cameraRig_; |
| 66 | |
| 67 | /// vector of camera Ids (one for each observation, in the same order), |
| 68 | /// identifying which camera took the measurement |
| 69 | FastVector<size_t> cameraIds_; |
| 70 | |
| 71 | public: |
| 72 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| 73 | |
| 74 | static const int DimBlock = |
| 75 | 12; ///< size of the variable stacking 2 poses from which the observation |
| 76 | ///< pose is interpolated |
| 77 | static const int DimPose = 6; ///< Pose3 dimension |
| 78 | static const int ZDim = 2; ///< Measurement dimension (Point2) |
| 79 | typedef Eigen::Matrix<double, ZDim, DimBlock> |
| 80 | MatrixZD; // F blocks (derivatives wrt block of 2 poses) |
| 81 | typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>> |
| 82 | FBlocks; // vector of F blocks |
| 83 | |
| 84 | typedef CAMERA Camera; |
| 85 | typedef CameraSet<CAMERA> Cameras; |
| 86 | |
| 87 | /// shorthand for a smart pointer to a factor |
| 88 | typedef std::shared_ptr<This> shared_ptr; |
| 89 | |
| 90 | /// Default constructor, only for serialization |
| 91 | SmartProjectionPoseFactorRollingShutter() {} |
| 92 | |
| 93 | /** |
| 94 | * Constructor |
| 95 | * @param Isotropic measurement noise |
| 96 | * @param cameraRig set of cameras (fixed poses wrt body and intrinsics) |
| 97 | * taking the measurements |
| 98 | * @param params internal parameters of the smart factors |
| 99 | */ |
| 100 | SmartProjectionPoseFactorRollingShutter( |
| 101 | const SharedNoiseModel& sharedNoiseModel, |
| 102 | const std::shared_ptr<Cameras>& cameraRig, |
| 103 | const SmartProjectionParams& params = SmartProjectionParams()) |
| 104 | : Base(sharedNoiseModel, params), cameraRig_(cameraRig) { |
| 105 | // throw exception if configuration is not supported by this factor |
| 106 | if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY) |
| 107 | throw std::runtime_error( |
| 108 | "SmartProjectionRigFactor: " |
| 109 | "degeneracyMode must be set to ZERO_ON_DEGENERACY" ); |
| 110 | if (Base::params_.linearizationMode != gtsam::HESSIAN) |
| 111 | throw std::runtime_error( |
| 112 | "SmartProjectionRigFactor: " |
| 113 | "linearizationMode must be set to HESSIAN" ); |
| 114 | } |
| 115 | |
| 116 | /** |
| 117 | * add a new measurement, with 2 pose keys, interpolation factor, and cameraId |
| 118 | * @param measured 2-dimensional location of the projection of a single |
| 119 | * landmark in a single view (the measurement), interpolated from the 2 poses |
| 120 | * @param world_P_body_key1 key corresponding to the first body poses (time <= |
| 121 | * time pixel is acquired) |
| 122 | * @param world_P_body_key2 key corresponding to the second body poses (time |
| 123 | * >= time pixel is acquired) |
| 124 | * @param alpha interpolation factor in [0,1], such that if alpha = 0 the |
| 125 | * interpolated pose is the same as world_P_body_key1 |
| 126 | * @param cameraId ID of the camera taking the measurement (default 0) |
| 127 | */ |
| 128 | void add(const MEASUREMENT& measured, const Key& world_P_body_key1, |
| 129 | const Key& world_P_body_key2, const double& alpha, |
| 130 | const size_t& cameraId = 0) { |
| 131 | // store measurements in base class |
| 132 | this->measured_.push_back(measured); |
| 133 | |
| 134 | // store the pair of keys for each measurement, in the same order |
| 135 | world_P_body_key_pairs_.push_back( |
| 136 | x: std::make_pair(x: world_P_body_key1, y: world_P_body_key2)); |
| 137 | |
| 138 | // also store keys in the keys_ vector: these keys are assumed to be |
| 139 | // unique, so we avoid duplicates here |
| 140 | if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key1) == |
| 141 | this->keys_.end()) |
| 142 | this->keys_.push_back(world_P_body_key1); // add only unique keys |
| 143 | if (std::find(this->keys_.begin(), this->keys_.end(), world_P_body_key2) == |
| 144 | this->keys_.end()) |
| 145 | this->keys_.push_back(world_P_body_key2); // add only unique keys |
| 146 | |
| 147 | // store interpolation factor |
| 148 | alphas_.push_back(x: alpha); |
| 149 | |
| 150 | // store id of the camera taking the measurement |
| 151 | cameraIds_.push_back(x: cameraId); |
| 152 | } |
| 153 | |
| 154 | /** |
| 155 | * Variant of the previous "add" function in which we include multiple |
| 156 | * measurements |
| 157 | * @param measurements vector of the 2m dimensional location of the projection |
| 158 | * of a single landmark in the m views (the measurements) |
| 159 | * @param world_P_body_key_pairs vector where the i-th element contains a pair |
| 160 | * of keys corresponding to the pair of poses from which the observation pose |
| 161 | * for the i0-th measurement can be interpolated |
| 162 | * @param alphas vector of interpolation params (in [0,1]), one for each |
| 163 | * measurement (in the same order) |
| 164 | * @param cameraIds IDs of the cameras taking each measurement (same order as |
| 165 | * the measurements) |
| 166 | */ |
| 167 | void add(const MEASUREMENTS& measurements, |
| 168 | const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs, |
| 169 | const std::vector<double>& alphas, |
| 170 | const FastVector<size_t>& cameraIds = FastVector<size_t>()) { |
| 171 | if (world_P_body_key_pairs.size() != measurements.size() || |
| 172 | world_P_body_key_pairs.size() != alphas.size() || |
| 173 | (world_P_body_key_pairs.size() != cameraIds.size() && |
| 174 | cameraIds.size() != 0)) { // cameraIds.size()=0 is default |
| 175 | throw std::runtime_error( |
| 176 | "SmartProjectionPoseFactorRollingShutter: " |
| 177 | "trying to add inconsistent inputs" ); |
| 178 | } |
| 179 | if (cameraIds.size() == 0 && cameraRig_->size() > 1) { |
| 180 | throw std::runtime_error( |
| 181 | "SmartProjectionPoseFactorRollingShutter: " |
| 182 | "camera rig includes multiple camera " |
| 183 | "but add did not input cameraIds" ); |
| 184 | } |
| 185 | for (size_t i = 0; i < measurements.size(); i++) { |
| 186 | add(measurements[i], world_P_body_key_pairs[i].first, |
| 187 | world_P_body_key_pairs[i].second, alphas[i], |
| 188 | cameraIds.size() == 0 ? 0 |
| 189 | : cameraIds[i]); // use 0 as default if |
| 190 | // cameraIds was not specified |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /// return (for each observation) the keys of the pair of poses from which we |
| 195 | /// interpolate |
| 196 | const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs() const { |
| 197 | return world_P_body_key_pairs_; |
| 198 | } |
| 199 | |
| 200 | /// return the interpolation factors alphas |
| 201 | const std::vector<double>& alphas() const { return alphas_; } |
| 202 | |
| 203 | /// return the calibration object |
| 204 | const std::shared_ptr<Cameras>& cameraRig() const { return cameraRig_; } |
| 205 | |
| 206 | /// return the calibration object |
| 207 | const FastVector<size_t>& cameraIds() const { return cameraIds_; } |
| 208 | |
| 209 | /** |
| 210 | * print |
| 211 | * @param s optional string naming the factor |
| 212 | * @param keyFormatter optional formatter useful for printing Symbols |
| 213 | */ |
| 214 | void print( |
| 215 | const std::string& s = "" , |
| 216 | const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override { |
| 217 | std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n " ; |
| 218 | for (size_t i = 0; i < cameraIds_.size(); i++) { |
| 219 | std::cout << "-- Measurement nr " << i << std::endl; |
| 220 | std::cout << " pose1 key: " |
| 221 | << keyFormatter(world_P_body_key_pairs_[i].first) << std::endl; |
| 222 | std::cout << " pose2 key: " |
| 223 | << keyFormatter(world_P_body_key_pairs_[i].second) << std::endl; |
| 224 | std::cout << " alpha: " << alphas_[i] << std::endl; |
| 225 | std::cout << "cameraId: " << cameraIds_[i] << std::endl; |
| 226 | (*cameraRig_)[cameraIds_[i]].print("camera in rig:\n" ); |
| 227 | } |
| 228 | Base::print("" , keyFormatter); |
| 229 | } |
| 230 | |
| 231 | /// equals |
| 232 | bool equals(const NonlinearFactor& p, double tol = 1e-9) const override { |
| 233 | const SmartProjectionPoseFactorRollingShutter<CAMERA>* e = |
| 234 | dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CAMERA>*>( |
| 235 | &p); |
| 236 | |
| 237 | double keyPairsEqual = true; |
| 238 | if (this->world_P_body_key_pairs_.size() == |
| 239 | e->world_P_body_key_pairs().size()) { |
| 240 | for (size_t k = 0; k < this->world_P_body_key_pairs_.size(); k++) { |
| 241 | const Key key1own = world_P_body_key_pairs_[k].first; |
| 242 | const Key key1e = e->world_P_body_key_pairs()[k].first; |
| 243 | const Key key2own = world_P_body_key_pairs_[k].second; |
| 244 | const Key key2e = e->world_P_body_key_pairs()[k].second; |
| 245 | if (!(key1own == key1e) || !(key2own == key2e)) { |
| 246 | keyPairsEqual = false; |
| 247 | break; |
| 248 | } |
| 249 | } |
| 250 | } else { |
| 251 | keyPairsEqual = false; |
| 252 | } |
| 253 | |
| 254 | return e && Base::equals(p, tol) && alphas_ == e->alphas() && |
| 255 | keyPairsEqual && cameraRig_->equals(*(e->cameraRig())) && |
| 256 | std::equal(cameraIds_.begin(), cameraIds_.end(), |
| 257 | e->cameraIds().begin()); |
| 258 | } |
| 259 | |
| 260 | /** |
| 261 | * Collect all cameras involved in this factor |
| 262 | * @param values Values structure which must contain camera poses |
| 263 | * corresponding to keys involved in this factor |
| 264 | * @return Cameras |
| 265 | */ |
| 266 | typename Base::Cameras cameras(const Values& values) const override { |
| 267 | typename Base::Cameras cameras; |
| 268 | for (size_t i = 0; i < this->measured_.size(); |
| 269 | i++) { // for each measurement |
| 270 | const Pose3& w_P_body1 = |
| 271 | values.at<Pose3>(j: world_P_body_key_pairs_[i].first); |
| 272 | const Pose3& w_P_body2 = |
| 273 | values.at<Pose3>(j: world_P_body_key_pairs_[i].second); |
| 274 | double interpolationFactor = alphas_[i]; |
| 275 | const Pose3& w_P_body = |
| 276 | interpolate<Pose3>(X: w_P_body1, Y: w_P_body2, t: interpolationFactor); |
| 277 | const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]]; |
| 278 | const Pose3& body_P_cam = camera_i.pose(); |
| 279 | const Pose3& w_P_cam = w_P_body.compose(g: body_P_cam); |
| 280 | cameras.emplace_back(w_P_cam, |
| 281 | make_shared<typename CAMERA::CalibrationType>( |
| 282 | camera_i.calibration())); |
| 283 | } |
| 284 | return cameras; |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * error calculates the error of the factor. |
| 289 | */ |
| 290 | double error(const Values& values) const override { |
| 291 | if (this->active(values)) { |
| 292 | return this->totalReprojectionError(this->cameras(values)); |
| 293 | } else { // else of active flag |
| 294 | return 0.0; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /** |
| 299 | * Compute jacobian F, E and error vector at a given linearization point |
| 300 | * @param values Values structure which must contain camera poses |
| 301 | * corresponding to keys involved in this factor |
| 302 | * @return Return arguments are the camera jacobians Fs (including the |
| 303 | * jacobian with respect to both body poses we interpolate from), the point |
| 304 | * Jacobian E, and the error vector b. Note that the jacobians are computed |
| 305 | * for a given point. |
| 306 | */ |
| 307 | void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b, |
| 308 | const Values& values) const { |
| 309 | if (!this->result_) { |
| 310 | throw("computeJacobiansWithTriangulatedPoint" ); |
| 311 | } else { // valid result: compute jacobians |
| 312 | size_t numViews = this->measured_.size(); |
| 313 | E = Matrix::Zero(rows: 2 * numViews, |
| 314 | cols: 3); // a Point2 for each view (point jacobian) |
| 315 | b = Vector::Zero(size: 2 * numViews); // a Point2 for each view |
| 316 | // intermediate Jacobians |
| 317 | Eigen::Matrix<double, ZDim, DimPose> dProject_dPoseCam; |
| 318 | Eigen::Matrix<double, DimPose, DimPose> dInterpPose_dPoseBody1, |
| 319 | dInterpPose_dPoseBody2, dPoseCam_dInterpPose; |
| 320 | Eigen::Matrix<double, ZDim, 3> Ei; |
| 321 | |
| 322 | for (size_t i = 0; i < numViews; i++) { // for each camera/measurement |
| 323 | auto w_P_body1 = values.at<Pose3>(j: world_P_body_key_pairs_[i].first); |
| 324 | auto w_P_body2 = values.at<Pose3>(j: world_P_body_key_pairs_[i].second); |
| 325 | double interpolationFactor = alphas_[i]; |
| 326 | // get interpolated pose: |
| 327 | auto w_P_body = |
| 328 | interpolate<Pose3>(X: w_P_body1, Y: w_P_body2, t: interpolationFactor, |
| 329 | Hx: dInterpPose_dPoseBody1, Hy: dInterpPose_dPoseBody2); |
| 330 | const typename Base::Camera& camera_i = (*cameraRig_)[cameraIds_[i]]; |
| 331 | auto body_P_cam = camera_i.pose(); |
| 332 | auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose); |
| 333 | typename Base::Camera camera( |
| 334 | w_P_cam, make_shared<typename CAMERA::CalibrationType>( |
| 335 | camera_i.calibration())); |
| 336 | |
| 337 | // get jacobians and error vector for current measurement |
| 338 | Point2 reprojectionError_i = camera.reprojectionError( |
| 339 | *this->result_, this->measured_.at(i), dProject_dPoseCam, Ei); |
| 340 | Eigen::Matrix<double, ZDim, DimBlock> J; // 2 x 12 |
| 341 | J.block(startRow: 0, startCol: 0, blockRows: ZDim, blockCols: 6) = |
| 342 | dProject_dPoseCam * dPoseCam_dInterpPose * |
| 343 | dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6) |
| 344 | J.block(startRow: 0, startCol: 6, blockRows: ZDim, blockCols: 6) = |
| 345 | dProject_dPoseCam * dPoseCam_dInterpPose * |
| 346 | dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6) |
| 347 | |
| 348 | // fit into the output structures |
| 349 | Fs.push_back(x: J); |
| 350 | size_t row = 2 * i; |
| 351 | b.segment<ZDim>(start: row) = -reprojectionError_i; |
| 352 | E.block<ZDim, 3>(startRow: row, startCol: 0) = Ei; |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | /// linearize and return a Hessianfactor that is an approximation of error(p) |
| 358 | std::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor( |
| 359 | const Values& values, const double& lambda = 0.0, |
| 360 | bool diagonalDamping = false) const { |
| 361 | // we may have multiple observation sharing the same keys (due to the |
| 362 | // rolling shutter interpolation), hence the number of unique keys may be |
| 363 | // smaller than 2 * nrMeasurements |
| 364 | size_t nrUniqueKeys = |
| 365 | this->keys_ |
| 366 | .size(); // note: by construction, keys_ only contains unique keys |
| 367 | |
| 368 | typename Base::Cameras cameras = this->cameras(values); |
| 369 | |
| 370 | // Create structures for Hessian Factors |
| 371 | KeyVector js; |
| 372 | std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2); |
| 373 | std::vector<Vector> gs(nrUniqueKeys); |
| 374 | |
| 375 | if (this->measured_.size() != |
| 376 | cameras.size()) // 1 observation per interpolated camera |
| 377 | throw std::runtime_error( |
| 378 | "SmartProjectionPoseFactorRollingShutter: " |
| 379 | "measured_.size() inconsistent with input" ); |
| 380 | |
| 381 | // triangulate 3D point at given linearization point |
| 382 | this->triangulateSafe(cameras); |
| 383 | |
| 384 | if (!this->result_) { // failed: return "empty/zero" Hessian |
| 385 | if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) { |
| 386 | for (Matrix& m : Gs) m = Matrix::Zero(rows: DimPose, cols: DimPose); |
| 387 | for (Vector& v : gs) v = Vector::Zero(size: DimPose); |
| 388 | return std::make_shared<RegularHessianFactor<DimPose>>(this->keys_, |
| 389 | Gs, gs, 0.0); |
| 390 | } else { |
| 391 | throw std::runtime_error( |
| 392 | "SmartProjectionPoseFactorRollingShutter: " |
| 393 | "only supported degeneracy mode is ZERO_ON_DEGENERACY" ); |
| 394 | } |
| 395 | } |
| 396 | // compute Jacobian given triangulated 3D Point |
| 397 | FBlocks Fs; |
| 398 | Matrix E; |
| 399 | Vector b; |
| 400 | this->computeJacobiansWithTriangulatedPoint(Fs, E, b, values); |
| 401 | |
| 402 | // Whiten using noise model |
| 403 | this->noiseModel_->WhitenSystem(E, b); |
| 404 | for (size_t i = 0; i < Fs.size(); i++) |
| 405 | Fs[i] = this->noiseModel_->Whiten(Fs[i]); |
| 406 | |
| 407 | Matrix3 P = Cameras::PointCov(E, lambda, diagonalDamping); |
| 408 | |
| 409 | // Collect all the key pairs: these are the keys that correspond to the |
| 410 | // blocks in Fs (on which we apply the Schur Complement) |
| 411 | KeyVector nonuniqueKeys; |
| 412 | for (size_t i = 0; i < world_P_body_key_pairs_.size(); i++) { |
| 413 | nonuniqueKeys.push_back(x: world_P_body_key_pairs_.at(n: i).first); |
| 414 | nonuniqueKeys.push_back(x: world_P_body_key_pairs_.at(n: i).second); |
| 415 | } |
| 416 | |
| 417 | // Build augmented Hessian (with last row/column being the information |
| 418 | // vector) Note: we need to get the augumented hessian wrt the unique keys |
| 419 | // in key_ |
| 420 | SymmetricBlockMatrix augmentedHessianUniqueKeys = |
| 421 | Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 12, 6>( |
| 422 | Fs, E, P, b, nonuniqueKeys, this->keys_); |
| 423 | |
| 424 | return std::make_shared<RegularHessianFactor<DimPose>>( |
| 425 | this->keys_, augmentedHessianUniqueKeys); |
| 426 | } |
| 427 | |
| 428 | /** |
| 429 | * Linearize to Gaussian Factor (possibly adding a damping factor Lambda for |
| 430 | * LM) |
| 431 | * @param values Values structure which must contain camera poses and |
| 432 | * extrinsic pose for this factor |
| 433 | * @return a Gaussian factor |
| 434 | */ |
| 435 | std::shared_ptr<GaussianFactor> linearizeDamped( |
| 436 | const Values& values, const double& lambda = 0.0) const { |
| 437 | // depending on flag set on construction we may linearize to different |
| 438 | // linear factors |
| 439 | switch (this->params_.linearizationMode) { |
| 440 | case HESSIAN: |
| 441 | return this->createHessianFactor(values, lambda); |
| 442 | default: |
| 443 | throw std::runtime_error( |
| 444 | "SmartProjectionPoseFactorRollingShutter: " |
| 445 | "unknown linearization mode" ); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | /// linearize |
| 450 | std::shared_ptr<GaussianFactor> linearize( |
| 451 | const Values& values) const override { |
| 452 | return this->linearizeDamped(values); |
| 453 | } |
| 454 | |
| 455 | private: |
| 456 | #if GTSAM_ENABLE_BOOST_SERIALIZATION /// |
| 457 | /// Serialization function |
| 458 | friend class boost::serialization::access; |
| 459 | template <class ARCHIVE> |
| 460 | void serialize(ARCHIVE& ar, const unsigned int /*version*/) { |
| 461 | ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); |
| 462 | } |
| 463 | #endif |
| 464 | }; |
| 465 | // end of class declaration |
| 466 | |
| 467 | /// traits |
| 468 | template <class CAMERA> |
| 469 | struct traits<SmartProjectionPoseFactorRollingShutter<CAMERA>> |
| 470 | : public Testable<SmartProjectionPoseFactorRollingShutter<CAMERA>> {}; |
| 471 | |
| 472 | } // namespace gtsam |
| 473 | |