| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file testSubgraphSolver.cpp |
| 14 | * @brief Unit tests for SubgraphSolver |
| 15 | * @author Yong-Dian Jian |
| 16 | **/ |
| 17 | |
| 18 | #include <gtsam/linear/SubgraphSolver.h> |
| 19 | |
| 20 | #include <tests/smallExample.h> |
| 21 | #include <gtsam/linear/GaussianBayesNet.h> |
| 22 | #include <gtsam/linear/iterative.h> |
| 23 | #include <gtsam/linear/GaussianFactorGraph.h> |
| 24 | #include <gtsam/linear/SubgraphBuilder.h> |
| 25 | #include <gtsam/inference/Symbol.h> |
| 26 | #include <gtsam/inference/Ordering.h> |
| 27 | #include <gtsam/base/numericalDerivative.h> |
| 28 | |
| 29 | #include <CppUnitLite/TestHarness.h> |
| 30 | |
| 31 | using namespace std; |
| 32 | using namespace gtsam; |
| 33 | |
| 34 | static size_t N = 3; |
| 35 | static SubgraphSolverParameters kParameters; |
| 36 | static auto kOrdering = example::planarOrdering(N); |
| 37 | |
| 38 | /* ************************************************************************* */ |
| 39 | /** unnormalized error */ |
| 40 | static double error(const GaussianFactorGraph& fg, const VectorValues& x) { |
| 41 | double total_error = 0.; |
| 42 | for(const GaussianFactor::shared_ptr& factor: fg) |
| 43 | total_error += factor->error(c: x); |
| 44 | return total_error; |
| 45 | } |
| 46 | |
| 47 | /* ************************************************************************* */ |
| 48 | TEST( SubgraphSolver, Parameters ) |
| 49 | { |
| 50 | LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity()); |
| 51 | LONGS_EQUAL(500, kParameters.maxIterations); |
| 52 | } |
| 53 | |
| 54 | /* ************************************************************************* */ |
| 55 | TEST( SubgraphSolver, splitFactorGraph ) |
| 56 | { |
| 57 | // Build a planar graph |
| 58 | const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b |
| 59 | |
| 60 | SubgraphBuilderParameters params; |
| 61 | params.augmentationFactor = 0.0; |
| 62 | SubgraphBuilder builder(params); |
| 63 | auto subgraph = builder(Ab); |
| 64 | EXPECT_LONGS_EQUAL(9, subgraph.size()); |
| 65 | |
| 66 | const auto [Ab1, Ab2] = splitFactorGraph(factorGraph: Ab, subgraph); |
| 67 | EXPECT_LONGS_EQUAL(9, Ab1.size()); |
| 68 | EXPECT_LONGS_EQUAL(13, Ab2.size()); |
| 69 | } |
| 70 | |
| 71 | /* ************************************************************************* */ |
| 72 | TEST( SubgraphSolver, constructor1 ) |
| 73 | { |
| 74 | // Build a planar graph |
| 75 | const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b |
| 76 | |
| 77 | // The first constructor just takes a factor graph (and kParameters) |
| 78 | // and it will split the graph into A1 and A2, where A1 is a spanning tree |
| 79 | SubgraphSolver solver(Ab, kParameters, kOrdering); |
| 80 | VectorValues optimized = solver.optimize(); // does PCG optimization |
| 81 | DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); |
| 82 | } |
| 83 | |
| 84 | /* ************************************************************************* */ |
| 85 | TEST( SubgraphSolver, constructor2 ) |
| 86 | { |
| 87 | // Build a planar graph |
| 88 | size_t N = 3; |
| 89 | const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b |
| 90 | |
| 91 | // Get the spanning tree, A1*x-b1 and A2*x-b2 |
| 92 | const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, original: Ab); |
| 93 | |
| 94 | // The second constructor takes two factor graphs, so the caller can specify |
| 95 | // the preconditioner (Ab1) and the constraints that are left out (Ab2) |
| 96 | SubgraphSolver solver(Ab1, Ab2, kParameters, kOrdering); |
| 97 | VectorValues optimized = solver.optimize(); |
| 98 | DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); |
| 99 | } |
| 100 | |
| 101 | /* ************************************************************************* */ |
| 102 | TEST( SubgraphSolver, constructor3 ) |
| 103 | { |
| 104 | // Build a planar graph |
| 105 | size_t N = 3; |
| 106 | const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b |
| 107 | |
| 108 | // Get the spanning tree and corresponding kOrdering |
| 109 | // A1*x-b1 and A2*x-b2 |
| 110 | const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, original: Ab); |
| 111 | |
| 112 | // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT |
| 113 | auto Rc1 = *Ab1.eliminateSequential(); |
| 114 | |
| 115 | // The third constructor allows the caller to pass an already solved preconditioner Rc1_ |
| 116 | // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before |
| 117 | SubgraphSolver solver(Rc1, Ab2, kParameters); |
| 118 | VectorValues optimized = solver.optimize(); |
| 119 | DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); |
| 120 | } |
| 121 | |
| 122 | /* ************************************************************************* */ |
| 123 | int main() { TestResult tr; return TestRegistry::runAllTests(result&: tr); } |
| 124 | /* ************************************************************************* */ |
| 125 | |