| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file testNonlinearOptimizer.cpp |
| 14 | * @brief Unit tests for NonlinearOptimizer class |
| 15 | * @author Frank Dellaert |
| 16 | */ |
| 17 | |
| 18 | #include <tests/smallExample.h> |
| 19 | #include <gtsam/slam/BetweenFactor.h> |
| 20 | #include <gtsam/nonlinear/NonlinearFactorGraph.h> |
| 21 | #include <gtsam/nonlinear/Values.h> |
| 22 | #include <gtsam/nonlinear/NonlinearConjugateGradientOptimizer.h> |
| 23 | #include <gtsam/nonlinear/GaussNewtonOptimizer.h> |
| 24 | #include <gtsam/nonlinear/DoglegOptimizer.h> |
| 25 | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> |
| 26 | #include <gtsam/linear/GaussianFactorGraph.h> |
| 27 | #include <gtsam/linear/NoiseModel.h> |
| 28 | #include <gtsam/inference/Symbol.h> |
| 29 | #include <gtsam/geometry/Pose2.h> |
| 30 | #include <gtsam/base/Matrix.h> |
| 31 | |
| 32 | #include <CppUnitLite/TestHarness.h> |
| 33 | |
| 34 | |
| 35 | #include <iostream> |
| 36 | #include <fstream> |
| 37 | |
| 38 | using namespace std; |
| 39 | using namespace gtsam; |
| 40 | |
| 41 | const double tol = 1e-5; |
| 42 | |
| 43 | using symbol_shorthand::X; |
| 44 | using symbol_shorthand::L; |
| 45 | |
| 46 | /* ************************************************************************* */ |
| 47 | TEST( NonlinearOptimizer, paramsEquals ) |
| 48 | { |
| 49 | // default constructors lead to two identical params |
| 50 | GaussNewtonParams gnParams1; |
| 51 | GaussNewtonParams gnParams2; |
| 52 | CHECK(gnParams1.equals(gnParams2)); |
| 53 | |
| 54 | // but the params become different if we change something in gnParams2 |
| 55 | gnParams2.setVerbosity("DELTA" ); |
| 56 | CHECK(!gnParams1.equals(gnParams2)); |
| 57 | } |
| 58 | |
| 59 | /* ************************************************************************* */ |
| 60 | TEST( NonlinearOptimizer, iterateLM ) |
| 61 | { |
| 62 | // really non-linear factor graph |
| 63 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 64 | |
| 65 | // config far from minimum |
| 66 | Point2 x0(3,0); |
| 67 | Values config; |
| 68 | config.insert(j: X(j: 1), val: x0); |
| 69 | |
| 70 | // normal iterate |
| 71 | GaussNewtonParams gnParams; |
| 72 | GaussNewtonOptimizer gnOptimizer(fg, config, gnParams); |
| 73 | gnOptimizer.iterate(); |
| 74 | |
| 75 | // LM iterate with lambda 0 should be the same |
| 76 | LevenbergMarquardtParams lmParams; |
| 77 | lmParams.lambdaInitial = 0.0; |
| 78 | LevenbergMarquardtOptimizer lmOptimizer(fg, config, lmParams); |
| 79 | lmOptimizer.iterate(); |
| 80 | |
| 81 | CHECK(assert_equal(gnOptimizer.values(), lmOptimizer.values(), 1e-9)); |
| 82 | } |
| 83 | |
| 84 | /* ************************************************************************* */ |
| 85 | TEST( NonlinearOptimizer, optimize ) |
| 86 | { |
| 87 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 88 | |
| 89 | // test error at minimum |
| 90 | Point2 xstar(0,0); |
| 91 | Values cstar; |
| 92 | cstar.insert(j: X(j: 1), val: xstar); |
| 93 | DOUBLES_EQUAL(0.0,fg.error(cstar),0.0); |
| 94 | |
| 95 | // test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 = |
| 96 | Point2 x0(3,3); |
| 97 | Values c0; |
| 98 | c0.insert(j: X(j: 1), val: x0); |
| 99 | DOUBLES_EQUAL(199.0,fg.error(c0),1e-3); |
| 100 | |
| 101 | // optimize parameters |
| 102 | Ordering ord; |
| 103 | ord.push_back(x: X(j: 1)); |
| 104 | |
| 105 | // Gauss-Newton |
| 106 | GaussNewtonParams gnParams; |
| 107 | gnParams.ordering = ord; |
| 108 | Values actual1 = GaussNewtonOptimizer(fg, c0, gnParams).optimize(); |
| 109 | DOUBLES_EQUAL(0,fg.error(actual1),tol); |
| 110 | |
| 111 | // Levenberg-Marquardt |
| 112 | LevenbergMarquardtParams lmParams; |
| 113 | lmParams.ordering = ord; |
| 114 | Values actual2 = LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize(); |
| 115 | DOUBLES_EQUAL(0,fg.error(actual2),tol); |
| 116 | |
| 117 | // Dogleg |
| 118 | DoglegParams dlParams; |
| 119 | dlParams.ordering = ord; |
| 120 | Values actual3 = DoglegOptimizer(fg, c0, dlParams).optimize(); |
| 121 | DOUBLES_EQUAL(0,fg.error(actual3),tol); |
| 122 | } |
| 123 | |
| 124 | /* ************************************************************************* */ |
| 125 | TEST( NonlinearOptimizer, SimpleLMOptimizer ) |
| 126 | { |
| 127 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 128 | |
| 129 | Point2 x0(3,3); |
| 130 | Values c0; |
| 131 | c0.insert(j: X(j: 1), val: x0); |
| 132 | |
| 133 | Values actual = LevenbergMarquardtOptimizer(fg, c0).optimize(); |
| 134 | DOUBLES_EQUAL(0,fg.error(actual),tol); |
| 135 | } |
| 136 | |
| 137 | /* ************************************************************************* */ |
| 138 | TEST( NonlinearOptimizer, SimpleGNOptimizer ) |
| 139 | { |
| 140 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 141 | |
| 142 | Point2 x0(3,3); |
| 143 | Values c0; |
| 144 | c0.insert(j: X(j: 1), val: x0); |
| 145 | |
| 146 | Values actual = GaussNewtonOptimizer(fg, c0).optimize(); |
| 147 | DOUBLES_EQUAL(0,fg.error(actual),tol); |
| 148 | } |
| 149 | |
| 150 | /* ************************************************************************* */ |
| 151 | TEST( NonlinearOptimizer, SimpleDLOptimizer ) |
| 152 | { |
| 153 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 154 | |
| 155 | Point2 x0(3,3); |
| 156 | Values c0; |
| 157 | c0.insert(j: X(j: 1), val: x0); |
| 158 | |
| 159 | Values actual = DoglegOptimizer(fg, c0).optimize(); |
| 160 | DOUBLES_EQUAL(0,fg.error(actual),tol); |
| 161 | } |
| 162 | |
| 163 | /* ************************************************************************* */ |
| 164 | TEST( NonlinearOptimizer, optimization_method ) |
| 165 | { |
| 166 | LevenbergMarquardtParams paramsQR; |
| 167 | paramsQR.linearSolverType = LevenbergMarquardtParams::MULTIFRONTAL_QR; |
| 168 | LevenbergMarquardtParams paramsChol; |
| 169 | paramsChol.linearSolverType = LevenbergMarquardtParams::MULTIFRONTAL_CHOLESKY; |
| 170 | |
| 171 | NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph(); |
| 172 | |
| 173 | Point2 x0(3,3); |
| 174 | Values c0; |
| 175 | c0.insert(j: X(j: 1), val: x0); |
| 176 | |
| 177 | Values actualMFQR = LevenbergMarquardtOptimizer(fg, c0, paramsQR).optimize(); |
| 178 | DOUBLES_EQUAL(0,fg.error(actualMFQR),tol); |
| 179 | |
| 180 | Values actualMFChol = LevenbergMarquardtOptimizer(fg, c0, paramsChol).optimize(); |
| 181 | DOUBLES_EQUAL(0,fg.error(actualMFChol),tol); |
| 182 | } |
| 183 | |
| 184 | /* ************************************************************************* */ |
| 185 | TEST( NonlinearOptimizer, Factorization ) |
| 186 | { |
| 187 | Values config; |
| 188 | config.insert(j: X(j: 1), val: Pose2(0.,0.,0.)); |
| 189 | config.insert(j: X(j: 2), val: Pose2(1.5,0.,0.)); |
| 190 | |
| 191 | NonlinearFactorGraph graph; |
| 192 | graph.addPrior(key: X(j: 1), prior: Pose2(0.,0.,0.), model: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1e-10)); |
| 193 | graph.emplace_shared<BetweenFactor<Pose2>>(args: X(j: 1),args: X(j: 2), args: Pose2(1.,0.,0.), args: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 194 | |
| 195 | Ordering ordering; |
| 196 | ordering.push_back(x: X(j: 1)); |
| 197 | ordering.push_back(x: X(j: 2)); |
| 198 | |
| 199 | LevenbergMarquardtParams params; |
| 200 | LevenbergMarquardtParams::SetLegacyDefaults(¶ms); |
| 201 | LevenbergMarquardtOptimizer optimizer(graph, config, ordering, params); |
| 202 | optimizer.iterate(); |
| 203 | |
| 204 | Values expected; |
| 205 | expected.insert(j: X(j: 1), val: Pose2(0.,0.,0.)); |
| 206 | expected.insert(j: X(j: 2), val: Pose2(1.,0.,0.)); |
| 207 | CHECK(assert_equal(expected, optimizer.values(), 1e-5)); |
| 208 | } |
| 209 | |
| 210 | /* ************************************************************************* */ |
| 211 | TEST(NonlinearOptimizer, NullFactor) { |
| 212 | |
| 213 | NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph(); |
| 214 | |
| 215 | // Add null factor |
| 216 | fg.push_back(factor: NonlinearFactorGraph::sharedFactor()); |
| 217 | |
| 218 | // test error at minimum |
| 219 | Point2 xstar(0,0); |
| 220 | Values cstar; |
| 221 | cstar.insert(j: X(j: 1), val: xstar); |
| 222 | DOUBLES_EQUAL(0.0,fg.error(cstar),0.0); |
| 223 | |
| 224 | // test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 = |
| 225 | Point2 x0(3,3); |
| 226 | Values c0; |
| 227 | c0.insert(j: X(j: 1), val: x0); |
| 228 | DOUBLES_EQUAL(199.0,fg.error(c0),1e-3); |
| 229 | |
| 230 | // optimize parameters |
| 231 | Ordering ord; |
| 232 | ord.push_back(x: X(j: 1)); |
| 233 | |
| 234 | // Gauss-Newton |
| 235 | Values actual1 = GaussNewtonOptimizer(fg, c0, ord).optimize(); |
| 236 | DOUBLES_EQUAL(0,fg.error(actual1),tol); |
| 237 | |
| 238 | // Levenberg-Marquardt |
| 239 | Values actual2 = LevenbergMarquardtOptimizer(fg, c0, ord).optimize(); |
| 240 | DOUBLES_EQUAL(0,fg.error(actual2),tol); |
| 241 | |
| 242 | // Dogleg |
| 243 | Values actual3 = DoglegOptimizer(fg, c0, ord).optimize(); |
| 244 | DOUBLES_EQUAL(0,fg.error(actual3),tol); |
| 245 | } |
| 246 | |
| 247 | /* ************************************************************************* */ |
| 248 | TEST_UNSAFE(NonlinearOptimizer, MoreOptimization) { |
| 249 | |
| 250 | NonlinearFactorGraph fg; |
| 251 | fg.addPrior(key: 0, prior: Pose2(0, 0, 0), model: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 252 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(1, 0, M_PI / 2), |
| 253 | args: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 254 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 1, args: 2, args: Pose2(1, 0, M_PI / 2), |
| 255 | args: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 256 | |
| 257 | Values init; |
| 258 | init.insert(j: 0, val: Pose2(3, 4, -M_PI)); |
| 259 | init.insert(j: 1, val: Pose2(10, 2, -M_PI)); |
| 260 | init.insert(j: 2, val: Pose2(11, 7, -M_PI)); |
| 261 | |
| 262 | Values expected; |
| 263 | expected.insert(j: 0, val: Pose2(0, 0, 0)); |
| 264 | expected.insert(j: 1, val: Pose2(1, 0, M_PI / 2)); |
| 265 | expected.insert(j: 2, val: Pose2(1, 1, M_PI)); |
| 266 | |
| 267 | VectorValues expectedGradient; |
| 268 | expectedGradient.insert(j: 0,value: Z_3x1); |
| 269 | expectedGradient.insert(j: 1,value: Z_3x1); |
| 270 | expectedGradient.insert(j: 2,value: Z_3x1); |
| 271 | |
| 272 | // Try LM and Dogleg |
| 273 | LevenbergMarquardtParams params = LevenbergMarquardtParams::LegacyDefaults(); |
| 274 | { |
| 275 | LevenbergMarquardtOptimizer optimizer(fg, init, params); |
| 276 | |
| 277 | // test convergence |
| 278 | Values actual = optimizer.optimize(); |
| 279 | EXPECT(assert_equal(expected, actual)); |
| 280 | |
| 281 | // Check that the gradient is zero |
| 282 | GaussianFactorGraph::shared_ptr linear = optimizer.linearize(); |
| 283 | EXPECT(assert_equal(expectedGradient,linear->gradientAtZero())); |
| 284 | } |
| 285 | EXPECT(assert_equal(expected, DoglegOptimizer(fg, init).optimize())); |
| 286 | |
| 287 | // cout << "===================================================================================" << endl; |
| 288 | |
| 289 | // Try LM with diagonal damping |
| 290 | Values initBetter; |
| 291 | initBetter.insert(j: 0, val: Pose2(3,4,0)); |
| 292 | initBetter.insert(j: 1, val: Pose2(10,2,M_PI/3)); |
| 293 | initBetter.insert(j: 2, val: Pose2(11,7,M_PI/2)); |
| 294 | |
| 295 | { |
| 296 | params.diagonalDamping = true; |
| 297 | LevenbergMarquardtOptimizer optimizer(fg, initBetter, params); |
| 298 | |
| 299 | // test the diagonal |
| 300 | GaussianFactorGraph::shared_ptr linear = optimizer.linearize(); |
| 301 | VectorValues d = linear->hessianDiagonal(); |
| 302 | VectorValues sqrtHessianDiagonal = d; |
| 303 | for (auto& [key, value] : sqrtHessianDiagonal) { |
| 304 | value = value.cwiseSqrt(); |
| 305 | } |
| 306 | GaussianFactorGraph damped = optimizer.buildDampedSystem(linear: *linear, sqrtHessianDiagonal); |
| 307 | VectorValues expectedDiagonal = d + params.lambdaInitial * d; |
| 308 | EXPECT(assert_equal(expectedDiagonal, damped.hessianDiagonal())); |
| 309 | |
| 310 | // test convergence (does not!) |
| 311 | Values actual = optimizer.optimize(); |
| 312 | EXPECT(assert_equal(expected, actual)); |
| 313 | |
| 314 | // Check that the gradient is zero (it is not!) |
| 315 | linear = optimizer.linearize(); |
| 316 | EXPECT(assert_equal(expectedGradient,linear->gradientAtZero())); |
| 317 | |
| 318 | // Check that the gradient is zero for damped system (it is not!) |
| 319 | damped = optimizer.buildDampedSystem(linear: *linear, sqrtHessianDiagonal); |
| 320 | VectorValues actualGradient = damped.gradientAtZero(); |
| 321 | EXPECT(assert_equal(expectedGradient,actualGradient)); |
| 322 | |
| 323 | /* This block was made to test the original initial guess "init" |
| 324 | // Check errors at convergence and errors in direction of gradient (decreases!) |
| 325 | EXPECT_DOUBLES_EQUAL(46.02558,fg.error(actual),1e-5); |
| 326 | EXPECT_DOUBLES_EQUAL(44.742237,fg.error(actual.retract(-0.01*actualGradient)),1e-5); |
| 327 | |
| 328 | // Check that solve yields gradient (it's not equal to gradient, as predicted) |
| 329 | VectorValues delta = damped.optimize(); |
| 330 | double factor = actualGradient[0][0]/delta[0][0]; |
| 331 | EXPECT(assert_equal(actualGradient,factor*delta)); |
| 332 | |
| 333 | // Still pointing downhill wrt actual gradient ! |
| 334 | EXPECT_DOUBLES_EQUAL( 0.1056157,dot(-1*actualGradient,delta),1e-3); |
| 335 | |
| 336 | // delta.print("This is the delta value computed by LM with diagonal damping"); |
| 337 | |
| 338 | // Still pointing downhill wrt expected gradient (IT DOES NOT! actually they are perpendicular) |
| 339 | EXPECT_DOUBLES_EQUAL( 0.0,dot(-1*expectedGradient,delta),1e-5); |
| 340 | |
| 341 | // Check errors at convergence and errors in direction of solution (does not decrease!) |
| 342 | EXPECT_DOUBLES_EQUAL(46.0254859,fg.error(actual.retract(delta)),1e-5); |
| 343 | |
| 344 | // Check errors at convergence and errors at a small step in direction of solution (does not decrease!) |
| 345 | EXPECT_DOUBLES_EQUAL(46.0255,fg.error(actual.retract(0.01*delta)),1e-3); |
| 346 | */ |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | /* ************************************************************************* */ |
| 351 | TEST(NonlinearOptimizer, Pose2OptimizationWithHuberNoOutlier) { |
| 352 | |
| 353 | NonlinearFactorGraph fg; |
| 354 | fg.addPrior(key: 0, prior: Pose2(0,0,0), model: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1)); |
| 355 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(1,1.1,M_PI/4), |
| 356 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 2.0), |
| 357 | noise: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1))); |
| 358 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(1,0.9,M_PI/2), |
| 359 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 3.0), |
| 360 | noise: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1))); |
| 361 | |
| 362 | Values init; |
| 363 | init.insert(j: 0, val: Pose2(0,0,0)); |
| 364 | init.insert(j: 1, val: Pose2(0.961187, 0.99965, 1.1781)); |
| 365 | |
| 366 | Values expected; |
| 367 | expected.insert(j: 0, val: Pose2(0,0,0)); |
| 368 | expected.insert(j: 1, val: Pose2(0.961187, 0.99965, 1.1781)); |
| 369 | |
| 370 | LevenbergMarquardtParams lm_params; |
| 371 | |
| 372 | auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); |
| 373 | auto lm_result = LevenbergMarquardtOptimizer(fg, init, lm_params).optimize(); |
| 374 | auto dl_result = DoglegOptimizer(fg, init).optimize(); |
| 375 | |
| 376 | EXPECT(assert_equal(expected, gn_result, 3e-2)); |
| 377 | EXPECT(assert_equal(expected, lm_result, 3e-2)); |
| 378 | EXPECT(assert_equal(expected, dl_result, 3e-2)); |
| 379 | } |
| 380 | |
| 381 | /* ************************************************************************* */ |
| 382 | TEST(NonlinearOptimizer, Point2LinearOptimizationWithHuber) { |
| 383 | |
| 384 | NonlinearFactorGraph fg; |
| 385 | fg.addPrior(key: 0, prior: Point2(0,0), model: noiseModel::Isotropic::Sigma(dim: 2,sigma: 0.01)); |
| 386 | fg.emplace_shared<BetweenFactor<Point2>>(args: 0, args: 1, args: Point2(1,1.8), |
| 387 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 1.0), |
| 388 | noise: noiseModel::Isotropic::Sigma(dim: 2,sigma: 1))); |
| 389 | fg.emplace_shared<BetweenFactor<Point2>>(args: 0, args: 1, args: Point2(1,0.9), |
| 390 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 1.0), |
| 391 | noise: noiseModel::Isotropic::Sigma(dim: 2,sigma: 1))); |
| 392 | fg.emplace_shared<BetweenFactor<Point2>>(args: 0, args: 1, args: Point2(1,90), |
| 393 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 1.0), |
| 394 | noise: noiseModel::Isotropic::Sigma(dim: 2,sigma: 1))); |
| 395 | |
| 396 | Values init; |
| 397 | init.insert(j: 0, val: Point2(1,1)); |
| 398 | init.insert(j: 1, val: Point2(1,0)); |
| 399 | |
| 400 | Values expected; |
| 401 | expected.insert(j: 0, val: Point2(0,0)); |
| 402 | expected.insert(j: 1, val: Point2(1,1.85)); |
| 403 | |
| 404 | LevenbergMarquardtParams params; |
| 405 | |
| 406 | auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); |
| 407 | auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize(); |
| 408 | auto dl_result = DoglegOptimizer(fg, init).optimize(); |
| 409 | |
| 410 | EXPECT(assert_equal(expected, gn_result, 1e-4)); |
| 411 | EXPECT(assert_equal(expected, lm_result, 1e-4)); |
| 412 | EXPECT(assert_equal(expected, dl_result, 1e-4)); |
| 413 | } |
| 414 | |
| 415 | /* ************************************************************************* */ |
| 416 | TEST(NonlinearOptimizer, Pose2OptimizationWithHuber) { |
| 417 | |
| 418 | NonlinearFactorGraph fg; |
| 419 | fg.addPrior(key: 0, prior: Pose2(0,0, 0), model: noiseModel::Isotropic::Sigma(dim: 3,sigma: 0.1)); |
| 420 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(0,9, M_PI/2), |
| 421 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 0.2), |
| 422 | noise: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1))); |
| 423 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(0, 11, M_PI/2), |
| 424 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 0.2), |
| 425 | noise: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1))); |
| 426 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(0, 10, M_PI/2), |
| 427 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 0.2), |
| 428 | noise: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1))); |
| 429 | fg.emplace_shared<BetweenFactor<Pose2>>(args: 0, args: 1, args: Pose2(0,9, 0), |
| 430 | args: noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 0.2), |
| 431 | noise: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1))); |
| 432 | |
| 433 | Values init; |
| 434 | init.insert(j: 0, val: Pose2(0, 0, 0)); |
| 435 | init.insert(j: 1, val: Pose2(0, 10, M_PI/4)); |
| 436 | |
| 437 | Values expected; |
| 438 | expected.insert(j: 0, val: Pose2(0, 0, 0)); |
| 439 | expected.insert(j: 1, val: Pose2(0, 10, 1.45212)); |
| 440 | |
| 441 | LevenbergMarquardtParams params; |
| 442 | |
| 443 | auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); |
| 444 | auto lm_result = LevenbergMarquardtOptimizer(fg, init, params).optimize(); |
| 445 | auto dl_result = DoglegOptimizer(fg, init).optimize(); |
| 446 | |
| 447 | EXPECT(assert_equal(expected, gn_result, 1e-1)); |
| 448 | EXPECT(assert_equal(expected, lm_result, 1e-1)); |
| 449 | EXPECT(assert_equal(expected, dl_result, 1e-1)); |
| 450 | } |
| 451 | |
| 452 | /* ************************************************************************* */ |
| 453 | TEST(NonlinearOptimizer, RobustMeanCalculation) { |
| 454 | |
| 455 | NonlinearFactorGraph fg; |
| 456 | |
| 457 | Values init; |
| 458 | |
| 459 | Values expected; |
| 460 | |
| 461 | auto huber = noiseModel::Robust::Create(robust: noiseModel::mEstimator::Huber::Create(k: 20), |
| 462 | noise: noiseModel::Isotropic::Sigma(dim: 1, sigma: 1)); |
| 463 | |
| 464 | vector<double> pts{-10,-3,-1,1,3,10,1000}; |
| 465 | for(auto pt : pts) { |
| 466 | fg.addPrior(key: 0, prior: pt, model: huber); |
| 467 | } |
| 468 | |
| 469 | init.insert(j: 0, val: 100.0); |
| 470 | expected.insert(j: 0, val: 3.33333333); |
| 471 | |
| 472 | DoglegParams params_dl; |
| 473 | params_dl.setRelativeErrorTol(1e-10); |
| 474 | |
| 475 | auto gn_result = GaussNewtonOptimizer(fg, init).optimize(); |
| 476 | auto lm_result = LevenbergMarquardtOptimizer(fg, init).optimize(); |
| 477 | auto dl_result = DoglegOptimizer(fg, init, params_dl).optimize(); |
| 478 | |
| 479 | EXPECT(assert_equal(expected, gn_result, tol)); |
| 480 | EXPECT(assert_equal(expected, lm_result, tol)); |
| 481 | EXPECT(assert_equal(expected, dl_result, tol)); |
| 482 | } |
| 483 | |
| 484 | /* ************************************************************************* */ |
| 485 | TEST(NonlinearOptimizer, disconnected_graph) { |
| 486 | Values expected; |
| 487 | expected.insert(j: X(j: 1), val: Pose2(0.,0.,0.)); |
| 488 | expected.insert(j: X(j: 2), val: Pose2(1.5,0.,0.)); |
| 489 | expected.insert(j: X(j: 3), val: Pose2(3.0,0.,0.)); |
| 490 | |
| 491 | Values init; |
| 492 | init.insert(j: X(j: 1), val: Pose2(0.,0.,0.)); |
| 493 | init.insert(j: X(j: 2), val: Pose2(0.,0.,0.)); |
| 494 | init.insert(j: X(j: 3), val: Pose2(0.,0.,0.)); |
| 495 | |
| 496 | NonlinearFactorGraph graph; |
| 497 | graph.addPrior(key: X(j: 1), prior: Pose2(0.,0.,0.), model: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1)); |
| 498 | graph.emplace_shared<BetweenFactor<Pose2>>(args: X(j: 1),args: X(j: 2), args: Pose2(1.5,0.,0.), args: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1)); |
| 499 | graph.addPrior(key: X(j: 3), prior: Pose2(3.,0.,0.), model: noiseModel::Isotropic::Sigma(dim: 3,sigma: 1)); |
| 500 | |
| 501 | EXPECT(assert_equal(expected, LevenbergMarquardtOptimizer(graph, init).optimize())); |
| 502 | } |
| 503 | |
| 504 | /* ************************************************************************* */ |
| 505 | #include <gtsam/linear/iterative.h> |
| 506 | |
| 507 | class IterativeLM : public LevenbergMarquardtOptimizer { |
| 508 | /// Solver specific parameters |
| 509 | ConjugateGradientParameters cgParams_; |
| 510 | Values initial_; |
| 511 | |
| 512 | public: |
| 513 | /// Constructor |
| 514 | IterativeLM(const NonlinearFactorGraph& graph, const Values& initialValues, |
| 515 | const ConjugateGradientParameters& p, |
| 516 | const LevenbergMarquardtParams& params = |
| 517 | LevenbergMarquardtParams::LegacyDefaults()) |
| 518 | : LevenbergMarquardtOptimizer(graph, initialValues, params), |
| 519 | cgParams_(p), |
| 520 | initial_(initialValues) {} |
| 521 | |
| 522 | /// Solve that uses conjugate gradient |
| 523 | VectorValues solve(const GaussianFactorGraph& gfg, |
| 524 | const NonlinearOptimizerParams& params) const override { |
| 525 | VectorValues zeros = initial_.zeroVectors(); |
| 526 | return conjugateGradientDescent(fg: gfg, x: zeros, parameters: cgParams_); |
| 527 | } |
| 528 | }; |
| 529 | |
| 530 | /* ************************************************************************* */ |
| 531 | TEST(NonlinearOptimizer, subclass_solver) { |
| 532 | Values expected; |
| 533 | expected.insert(j: X(j: 1), val: Pose2(0., 0., 0.)); |
| 534 | expected.insert(j: X(j: 2), val: Pose2(1.5, 0., 0.)); |
| 535 | expected.insert(j: X(j: 3), val: Pose2(3.0, 0., 0.)); |
| 536 | |
| 537 | Values init; |
| 538 | init.insert(j: X(j: 1), val: Pose2(0., 0., 0.)); |
| 539 | init.insert(j: X(j: 2), val: Pose2(0., 0., 0.)); |
| 540 | init.insert(j: X(j: 3), val: Pose2(0., 0., 0.)); |
| 541 | |
| 542 | NonlinearFactorGraph graph; |
| 543 | graph.addPrior(key: X(j: 1), prior: Pose2(0., 0., 0.), model: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 544 | graph.emplace_shared<BetweenFactor<Pose2>>(args: X(j: 1), args: X(j: 2), args: Pose2(1.5, 0., 0.), |
| 545 | args: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 546 | graph.addPrior(key: X(j: 3), prior: Pose2(3., 0., 0.), model: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 547 | |
| 548 | ConjugateGradientParameters p; |
| 549 | Values actual = IterativeLM(graph, init, p).optimize(); |
| 550 | EXPECT(assert_equal(expected, actual, 1e-4)); |
| 551 | } |
| 552 | |
| 553 | /* ************************************************************************* */ |
| 554 | TEST( NonlinearOptimizer, logfile ) |
| 555 | { |
| 556 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 557 | |
| 558 | Point2 x0(3,3); |
| 559 | Values c0; |
| 560 | c0.insert(j: X(j: 1), val: x0); |
| 561 | |
| 562 | // Levenberg-Marquardt |
| 563 | LevenbergMarquardtParams lmParams; |
| 564 | static const string filename("testNonlinearOptimizer.log" ); |
| 565 | lmParams.logFile = filename; |
| 566 | LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize(); |
| 567 | |
| 568 | // stringstream expected,actual; |
| 569 | // ifstream ifs(("../../gtsam/tests/" + filename).c_str()); |
| 570 | // if(!ifs) throw std::runtime_error(filename); |
| 571 | // expected << ifs.rdbuf(); |
| 572 | // ifs.close(); |
| 573 | // ifstream ifs2(filename.c_str()); |
| 574 | // if(!ifs2) throw std::runtime_error(filename); |
| 575 | // actual << ifs2.rdbuf(); |
| 576 | // EXPECT(actual.str()==expected.str()); |
| 577 | } |
| 578 | |
| 579 | /* ************************************************************************* */ |
| 580 | TEST( NonlinearOptimizer, iterationHook_LM ) |
| 581 | { |
| 582 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 583 | |
| 584 | Point2 x0(3,3); |
| 585 | Values c0; |
| 586 | c0.insert(j: X(j: 1), val: x0); |
| 587 | |
| 588 | // Levenberg-Marquardt |
| 589 | LevenbergMarquardtParams lmParams; |
| 590 | size_t lastIterCalled = 0; |
| 591 | lmParams.iterationHook = [&](size_t iteration, double oldError, double newError) |
| 592 | { |
| 593 | // Tests: |
| 594 | lastIterCalled = iteration; |
| 595 | EXPECT(newError<oldError); |
| 596 | |
| 597 | // Example of evolution printout: |
| 598 | //std::cout << "iter: " << iteration << " error: " << oldError << " => " << newError <<"\n"; |
| 599 | }; |
| 600 | LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize(); |
| 601 | |
| 602 | EXPECT(lastIterCalled>5); |
| 603 | } |
| 604 | /* ************************************************************************* */ |
| 605 | TEST( NonlinearOptimizer, iterationHook_CG ) |
| 606 | { |
| 607 | NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph()); |
| 608 | |
| 609 | Point2 x0(3,3); |
| 610 | Values c0; |
| 611 | c0.insert(j: X(j: 1), val: x0); |
| 612 | |
| 613 | // Levenberg-Marquardt |
| 614 | NonlinearConjugateGradientOptimizer::Parameters cgParams; |
| 615 | size_t lastIterCalled = 0; |
| 616 | cgParams.iterationHook = [&](size_t iteration, double oldError, double newError) |
| 617 | { |
| 618 | // Tests: |
| 619 | lastIterCalled = iteration; |
| 620 | EXPECT(newError<oldError); |
| 621 | |
| 622 | // Example of evolution printout: |
| 623 | //std::cout << "iter: " << iteration << " error: " << oldError << " => " << newError <<"\n"; |
| 624 | }; |
| 625 | NonlinearConjugateGradientOptimizer(fg, c0, cgParams).optimize(); |
| 626 | |
| 627 | EXPECT(lastIterCalled>5); |
| 628 | } |
| 629 | |
| 630 | |
| 631 | /* ************************************************************************* */ |
| 632 | //// Minimal traits example |
| 633 | struct MyType : public Vector3 { |
| 634 | using Vector3::Vector3; |
| 635 | }; |
| 636 | |
| 637 | namespace gtsam { |
| 638 | template <> |
| 639 | struct traits<MyType> { |
| 640 | static bool Equals(const MyType& a, const MyType& b, double tol) { |
| 641 | return (a - b).array().abs().maxCoeff() < tol; |
| 642 | } |
| 643 | static void Print(const MyType&, const string&) {} |
| 644 | static int GetDimension(const MyType&) { return 3; } |
| 645 | static MyType Retract(const MyType& a, const Vector3& b) { return a + b; } |
| 646 | static Vector3 Local(const MyType& a, const MyType& b) { return b - a; } |
| 647 | }; |
| 648 | } |
| 649 | |
| 650 | TEST(NonlinearOptimizer, Traits) { |
| 651 | NonlinearFactorGraph fg; |
| 652 | fg.addPrior(key: 0, prior: MyType(0, 0, 0), model: noiseModel::Isotropic::Sigma(dim: 3, sigma: 1)); |
| 653 | |
| 654 | Values init; |
| 655 | init.insert(j: 0, val: MyType(0,0,0)); |
| 656 | |
| 657 | LevenbergMarquardtOptimizer optimizer(fg, init); |
| 658 | Values actual = optimizer.optimize(); |
| 659 | EXPECT(assert_equal(init, actual)); |
| 660 | } |
| 661 | |
| 662 | /* ************************************************************************* */ |
| 663 | int main() { |
| 664 | TestResult tr; |
| 665 | return TestRegistry::runAllTests(result&: tr); |
| 666 | } |
| 667 | /* ************************************************************************* */ |
| 668 | |