| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010-2019, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file testShonanAveraging.cpp |
| 14 | * @date September 2019 |
| 15 | * @author Jing Wu |
| 16 | * @author Frank Dellaert |
| 17 | * @brief Timing script for Shonan Averaging algorithm |
| 18 | */ |
| 19 | |
| 20 | #include "gtsam/base/Matrix.h" |
| 21 | #include "gtsam/base/Vector.h" |
| 22 | #include "gtsam/geometry/Point3.h" |
| 23 | #include "gtsam/geometry/Rot3.h" |
| 24 | #include <gtsam/base/timing.h> |
| 25 | #include <gtsam/sfm/ShonanAveraging.h> |
| 26 | |
| 27 | #include <CppUnitLite/TestHarness.h> |
| 28 | |
| 29 | #include <chrono> |
| 30 | #include <fstream> |
| 31 | #include <iostream> |
| 32 | #include <map> |
| 33 | |
| 34 | using namespace std; |
| 35 | using namespace gtsam; |
| 36 | |
| 37 | // save a single line of timing info to an output stream |
| 38 | void saveData(size_t p, double time1, double costP, double cost3, double time2, |
| 39 | double min_eigenvalue, double suBound, std::ostream* os) { |
| 40 | *os << static_cast<int>(p) << "\t" << time1 << "\t" << costP << "\t" << cost3 |
| 41 | << "\t" << time2 << "\t" << min_eigenvalue << "\t" << suBound << endl; |
| 42 | } |
| 43 | |
| 44 | void checkR(const Matrix& R) { |
| 45 | Matrix R2 = R.transpose(); |
| 46 | Matrix actual_R = R2 * R; |
| 47 | assert_equal(expected: Rot3(), actual: Rot3(actual_R)); |
| 48 | } |
| 49 | |
| 50 | void saveResult(string name, const Values& values) { |
| 51 | ofstream myfile; |
| 52 | myfile.open(s: "shonan_result_of_" + name + ".dat" ); |
| 53 | size_t nrSO3 = values.count<SO3>(); |
| 54 | myfile << "#Type SO3 Number " << nrSO3 << "\n" ; |
| 55 | for (size_t i = 0; i < nrSO3; ++i) { |
| 56 | Matrix R = values.at<SO3>(j: i).matrix(); |
| 57 | // Check if the result of R.Transpose*R satisfy orthogonal constraint |
| 58 | checkR(R); |
| 59 | myfile << i; |
| 60 | for (int m = 0; m < 3; ++m) { |
| 61 | for (int n = 0; n < 3; ++n) { |
| 62 | myfile << " " << R(m, n); |
| 63 | } |
| 64 | } |
| 65 | myfile << "\n" ; |
| 66 | } |
| 67 | myfile.close(); |
| 68 | cout << "Saved shonan_result.dat file" << endl; |
| 69 | } |
| 70 | |
| 71 | void saveG2oResult(string name, const Values& values, std::map<Key, Pose3> poses) { |
| 72 | ofstream myfile; |
| 73 | myfile.open(s: "shonan_result_of_" + name + ".g2o" ); |
| 74 | size_t nrSO3 = values.count<SO3>(); |
| 75 | for (size_t i = 0; i < nrSO3; ++i) { |
| 76 | Matrix R = values.at<SO3>(j: i).matrix(); |
| 77 | // Check if the result of R.Transpose*R satisfy orthogonal constraint |
| 78 | checkR(R); |
| 79 | myfile << "VERTEX_SE3:QUAT" << " " ; |
| 80 | myfile << i << " " ; |
| 81 | myfile << poses[i].x() << " " << poses[i].y() << " " << poses[i].z() << " " ; |
| 82 | Quaternion quaternion = Rot3(R).toQuaternion(); |
| 83 | myfile << quaternion.x() << " " << quaternion.y() << " " << quaternion.z() |
| 84 | << " " << quaternion.w(); |
| 85 | myfile << "\n" ; |
| 86 | } |
| 87 | myfile.close(); |
| 88 | cout << "Saved shonan_result.g2o file" << endl; |
| 89 | } |
| 90 | |
| 91 | void saveResultQuat(const Values& values) { |
| 92 | ofstream myfile; |
| 93 | myfile.open(s: "shonan_result.dat" ); |
| 94 | size_t nrSOn = values.count<SOn>(); |
| 95 | for (size_t i = 0; i < nrSOn; ++i) { |
| 96 | GTSAM_PRINT(values.at<SOn>(i)); |
| 97 | Rot3 R = Rot3(values.at<SOn>(j: i).matrix()); |
| 98 | float x = R.toQuaternion().x(); |
| 99 | float y = R.toQuaternion().y(); |
| 100 | float z = R.toQuaternion().z(); |
| 101 | float w = R.toQuaternion().w(); |
| 102 | myfile << "QuatSO3 " << i; |
| 103 | myfile << "QuatSO3 " << i << " " << w << " " << x << " " << y << " " << z << "\n" ; |
| 104 | myfile.close(); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | int main(int argc, char* argv[]) { |
| 109 | // primitive argument parsing: |
| 110 | if (argc > 3) { |
| 111 | throw runtime_error("Usage: timeShonanAveraging [g2oFile]" ); |
| 112 | } |
| 113 | |
| 114 | string g2oFile; |
| 115 | try { |
| 116 | if (argc > 1) |
| 117 | g2oFile = argv[argc - 1]; |
| 118 | else |
| 119 | g2oFile = findExampleDataFile(name: "sphere2500" ); |
| 120 | |
| 121 | } catch (const exception& e) { |
| 122 | cerr << e.what() << '\n'; |
| 123 | exit(status: 1); |
| 124 | } |
| 125 | |
| 126 | // Create a csv output file |
| 127 | size_t pos1 = g2oFile.find(s: "data/" ); |
| 128 | size_t pos2 = g2oFile.find(s: ".g2o" ); |
| 129 | string name = g2oFile.substr(pos: pos1 + 5, n: pos2 - pos1 - 5); |
| 130 | cout << name << endl; |
| 131 | ofstream csvFile("shonan_timing_of_" + name + ".csv" ); |
| 132 | |
| 133 | // Create Shonan averaging instance from the file. |
| 134 | // ShonanAveragingParameters parameters; |
| 135 | // double sigmaNoiseInRadians = 0 * M_PI / 180; |
| 136 | // parameters.setNoiseSigma(sigmaNoiseInRadians); |
| 137 | static const ShonanAveraging3 kShonan(g2oFile); |
| 138 | |
| 139 | // increase p value and try optimize using Shonan Algorithm. use chrono for |
| 140 | // timing |
| 141 | size_t pMin = 3; |
| 142 | Values Qstar; |
| 143 | Vector minEigenVector; |
| 144 | double CostP = 0, Cost3 = 0, lambdaMin = 0, suBound = 0; |
| 145 | cout << "(int)p" << "\t" << "time1" << "\t" << "costP" << "\t" << "cost3" << "\t" |
| 146 | << "time2" << "\t" << "MinEigenvalue" << "\t" << "SuBound" << endl; |
| 147 | |
| 148 | const Values randomRotations = kShonan.initializeRandomly(); |
| 149 | |
| 150 | for (size_t p = pMin; p <= 7; p++) { |
| 151 | // Randomly initialize at lowest level, initialize by line search after that |
| 152 | const Values initial = |
| 153 | (p > pMin) ? kShonan.initializeWithDescent(p, values: Qstar, minEigenVector, |
| 154 | minEigenValue: lambdaMin) |
| 155 | : ShonanAveraging3::LiftTo<Rot3>(p: pMin, values: randomRotations); |
| 156 | chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); |
| 157 | // optimizing |
| 158 | const Values result = kShonan.tryOptimizingAt(p, initial); |
| 159 | chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); |
| 160 | chrono::duration<double> timeUsed1 = |
| 161 | chrono::duration_cast<chrono::duration<double>>(d: t2 - t1); |
| 162 | lambdaMin = kShonan.computeMinEigenValue(values: result, minEigenVector: &minEigenVector); |
| 163 | chrono::steady_clock::time_point t3 = chrono::steady_clock::now(); |
| 164 | chrono::duration<double> timeUsed2 = |
| 165 | chrono::duration_cast<chrono::duration<double>>(d: t3 - t1); |
| 166 | Qstar = result; |
| 167 | CostP = kShonan.costAt(p, values: result); |
| 168 | const Values SO3Values = kShonan.roundSolution(values: result); |
| 169 | Cost3 = kShonan.cost(values: SO3Values); |
| 170 | suBound = (Cost3 - CostP) / CostP; |
| 171 | |
| 172 | saveData(p, time1: timeUsed1.count(), costP: CostP, cost3: Cost3, time2: timeUsed2.count(), |
| 173 | min_eigenvalue: lambdaMin, suBound, os: &cout); |
| 174 | saveData(p, time1: timeUsed1.count(), costP: CostP, cost3: Cost3, time2: timeUsed2.count(), |
| 175 | min_eigenvalue: lambdaMin, suBound, os: &csvFile); |
| 176 | } |
| 177 | saveResult(name, values: kShonan.roundSolution(values: Qstar)); |
| 178 | // saveG2oResult(name, kShonan.roundSolution(Qstar), kShonan.Poses()); |
| 179 | return 0; |
| 180 | } |
| 181 | |