| 1 | /** |
| 2 | * @file testBetweenFactorEM.cpp |
| 3 | * @brief Unit test for the BetweenFactorEM |
| 4 | * @author Vadim Indelman |
| 5 | */ |
| 6 | |
| 7 | #include <CppUnitLite/TestHarness.h> |
| 8 | |
| 9 | |
| 10 | #include <gtsam_unstable/slam/BetweenFactorEM.h> |
| 11 | #include <gtsam/geometry/Pose2.h> |
| 12 | #include <gtsam/nonlinear/Values.h> |
| 13 | #include <gtsam/base/numericalDerivative.h> |
| 14 | #include <gtsam/base/Vector.h> |
| 15 | |
| 16 | #include <gtsam/slam/BetweenFactor.h> |
| 17 | |
| 18 | |
| 19 | using namespace std; |
| 20 | using namespace gtsam; |
| 21 | |
| 22 | |
| 23 | // Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below |
| 24 | // to reenable the test. |
| 25 | // #if 0 |
| 26 | |
| 27 | /* ************************************************************************* */ |
| 28 | Vector predictionError(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactorEM<gtsam::Pose2>& factor){ |
| 29 | gtsam::Values values; |
| 30 | values.insert(j: key1, val: p1); |
| 31 | values.insert(j: key2, val: p2); |
| 32 | return factor.whitenedError(x: values); |
| 33 | } |
| 34 | |
| 35 | /* ************************************************************************* */ |
| 36 | Vector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactor<gtsam::Pose2>& factor){ |
| 37 | gtsam::Values values; |
| 38 | values.insert(j: key1, val: p1); |
| 39 | values.insert(j: key2, val: p2); |
| 40 | // Vector err = factor.whitenedError(values); |
| 41 | // return err; |
| 42 | return factor.whitenedError(c: values); |
| 43 | } |
| 44 | |
| 45 | /* ************************************************************************* */ |
| 46 | TEST( BetweenFactorEM, ConstructorAndEquals) |
| 47 | { |
| 48 | gtsam::Key key1(1); |
| 49 | gtsam::Key key2(2); |
| 50 | |
| 51 | gtsam::Pose2 p1(10.0, 15.0, 0.1); |
| 52 | gtsam::Pose2 p2(15.0, 15.0, 0.3); |
| 53 | gtsam::Pose2 noise(0.5, 0.4, 0.01); |
| 54 | gtsam::Pose2 rel_pose_ideal = p1.between(g: p2); |
| 55 | gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(g: noise); |
| 56 | |
| 57 | SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(0.5, 0.5, 0.05))); |
| 58 | SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(5, 5, 1.0))); |
| 59 | |
| 60 | double prior_outlier = 0.5; |
| 61 | double prior_inlier = 0.5; |
| 62 | |
| 63 | // Constructor |
| 64 | BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 65 | prior_inlier, prior_outlier); |
| 66 | BetweenFactorEM<gtsam::Pose2> g(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 67 | prior_inlier, prior_outlier); |
| 68 | |
| 69 | // Equals |
| 70 | CHECK(assert_equal(f, g, 1e-5)); |
| 71 | } |
| 72 | |
| 73 | /* ************************************************************************* */ |
| 74 | TEST( BetweenFactorEM, EvaluateError) |
| 75 | { |
| 76 | gtsam::Key key1(1); |
| 77 | gtsam::Key key2(2); |
| 78 | |
| 79 | // Inlier test |
| 80 | gtsam::Pose2 p1(10.0, 15.0, 0.1); |
| 81 | gtsam::Pose2 p2(15.0, 15.0, 0.3); |
| 82 | gtsam::Pose2 noise(0.5, 0.4, 0.01); |
| 83 | gtsam::Pose2 rel_pose_ideal = p1.between(g: p2); |
| 84 | gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(g: noise); |
| 85 | |
| 86 | SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(0.5, 0.5, 0.05))); |
| 87 | SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(50.0, 50.0, 10.0))); |
| 88 | |
| 89 | gtsam::Values values; |
| 90 | values.insert(j: key1, val: p1); |
| 91 | values.insert(j: key2, val: p2); |
| 92 | |
| 93 | double prior_outlier = 0.5; |
| 94 | double prior_inlier = 0.5; |
| 95 | |
| 96 | BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 97 | prior_inlier, prior_outlier); |
| 98 | |
| 99 | Vector actual_err_wh = f.whitenedError(x: values); |
| 100 | |
| 101 | Vector3 actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); |
| 102 | Vector3 actual_err_wh_outlier = Vector3(actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); |
| 103 | |
| 104 | // cout << "Inlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier.norm()<<endl; |
| 105 | // cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl; |
| 106 | |
| 107 | // in case of inlier, inlier-mode whitented error should be dominant |
| 108 | // CHECK(actual_err_wh_inlier.norm() > 1000.0*actual_err_wh_outlier.norm()); |
| 109 | |
| 110 | // Outlier test |
| 111 | noise = gtsam::Pose2(10.5, 20.4, 2.01); |
| 112 | gtsam::Pose2 rel_pose_msr_test2 = rel_pose_ideal.compose(g: noise); |
| 113 | |
| 114 | BetweenFactorEM<gtsam::Pose2> g(key1, key2, rel_pose_msr_test2, model_inlier, model_outlier, |
| 115 | prior_inlier, prior_outlier); |
| 116 | |
| 117 | actual_err_wh = g.whitenedError(x: values); |
| 118 | |
| 119 | actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); |
| 120 | actual_err_wh_outlier = Vector3(actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); |
| 121 | |
| 122 | // in case of outlier, outlier-mode whitented error should be dominant |
| 123 | // CHECK(actual_err_wh_inlier.norm() < 1000.0*actual_err_wh_outlier.norm()); |
| 124 | // |
| 125 | // cout << "Outlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier<<endl; |
| 126 | // cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl; |
| 127 | |
| 128 | // Compare with standard between factor for the inlier case |
| 129 | prior_outlier = 0.0; |
| 130 | prior_inlier = 1.0; |
| 131 | BetweenFactorEM<gtsam::Pose2> h_EM(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 132 | prior_inlier, prior_outlier); |
| 133 | actual_err_wh = h_EM.whitenedError(x: values); |
| 134 | actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); |
| 135 | |
| 136 | BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier ); |
| 137 | Vector actual_err_wh_stnd = h.whitenedError(c: values); |
| 138 | |
| 139 | // cout<<"actual_err_wh: "<<actual_err_wh_inlier[0]<<", "<<actual_err_wh_inlier[1]<<", "<<actual_err_wh_inlier[2]<<endl; |
| 140 | // cout<<"actual_err_wh_stnd: "<<actual_err_wh_stnd[0]<<", "<<actual_err_wh_stnd[1]<<", "<<actual_err_wh_stnd[2]<<endl; |
| 141 | // |
| 142 | // CHECK( assert_equal(actual_err_wh_inlier, actual_err_wh_stnd, 1e-8)); |
| 143 | } |
| 144 | |
| 145 | ///* ************************************************************************** */ |
| 146 | TEST (BetweenFactorEM, jacobian ) { |
| 147 | |
| 148 | gtsam::Key key1(1); |
| 149 | gtsam::Key key2(2); |
| 150 | |
| 151 | // Inlier test |
| 152 | gtsam::Pose2 p1(10.0, 15.0, 0.1); |
| 153 | gtsam::Pose2 p2(15.0, 15.0, 0.3); |
| 154 | gtsam::Pose2 noise(0.5, 0.4, 0.01); |
| 155 | gtsam::Pose2 rel_pose_ideal = p1.between(g: p2); |
| 156 | gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(g: noise); |
| 157 | |
| 158 | SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(0.5, 0.5, 0.05))); |
| 159 | SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(50.0, 50.0, 10.0))); |
| 160 | |
| 161 | gtsam::Values values; |
| 162 | values.insert(j: key1, val: p1); |
| 163 | values.insert(j: key2, val: p2); |
| 164 | |
| 165 | double prior_outlier = 0.0; |
| 166 | double prior_inlier = 1.0; |
| 167 | |
| 168 | BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 169 | prior_inlier, prior_outlier); |
| 170 | |
| 171 | std::vector<gtsam::Matrix> H_actual(2); |
| 172 | Vector actual_err_wh = f.whitenedError(x: values, H&: H_actual); |
| 173 | |
| 174 | Matrix H1_actual = H_actual[0]; |
| 175 | Matrix H2_actual = H_actual[1]; |
| 176 | |
| 177 | // compare to standard between factor |
| 178 | BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier ); |
| 179 | Vector actual_err_wh_stnd = h.whitenedError(c: values); |
| 180 | Vector actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); |
| 181 | // CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8)); |
| 182 | std::vector<gtsam::Matrix> H_actual_stnd_unwh(2); |
| 183 | (void)h.unwhitenedError(x: values, H&: H_actual_stnd_unwh); |
| 184 | Matrix H1_actual_stnd_unwh = H_actual_stnd_unwh[0]; |
| 185 | Matrix H2_actual_stnd_unwh = H_actual_stnd_unwh[1]; |
| 186 | Matrix H1_actual_stnd = model_inlier->Whiten(H: H1_actual_stnd_unwh); |
| 187 | Matrix H2_actual_stnd = model_inlier->Whiten(H: H2_actual_stnd_unwh); |
| 188 | // CHECK( assert_equal(H1_actual_stnd, H1_actual, 1e-8)); |
| 189 | // CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8)); |
| 190 | |
| 191 | double stepsize = 1.0e-9; |
| 192 | using std::placeholders::_1; |
| 193 | Matrix H1_expected = gtsam::numericalDerivative11<Vector, Pose2>(h: std::bind(f: &predictionError, args: _1, args&: p2, args&: key1, args&: key2, args&: f), x: p1, delta: stepsize); |
| 194 | Matrix H2_expected = gtsam::numericalDerivative11<Vector, Pose2>(h: std::bind(f: &predictionError, args&: p1, args: _1, args&: key1, args&: key2, args&: f), x: p2, delta: stepsize); |
| 195 | |
| 196 | |
| 197 | // try to check numerical derivatives of a standard between factor |
| 198 | Matrix H1_expected_stnd = gtsam::numericalDerivative11<Vector, Pose2>(h: std::bind(f: &predictionError_standard, args: _1, args&: p2, args&: key1, args&: key2, args&: h), x: p1, delta: stepsize); |
| 199 | // CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5)); |
| 200 | // |
| 201 | // |
| 202 | // CHECK( assert_equal(H1_expected, H1_actual, 1e-8)); |
| 203 | // CHECK( assert_equal(H2_expected, H2_actual, 1e-8)); |
| 204 | |
| 205 | } |
| 206 | |
| 207 | |
| 208 | /* ************************************************************************* */ |
| 209 | TEST( BetweenFactorEM, CaseStudy) |
| 210 | { |
| 211 | |
| 212 | bool debug = false; |
| 213 | |
| 214 | gtsam::Key key1(1); |
| 215 | gtsam::Key key2(2); |
| 216 | |
| 217 | // Inlier test |
| 218 | gtsam::Pose2 p1; |
| 219 | gtsam::Pose2 p2(-0.0491752554, -0.289649075, -0.328993962); |
| 220 | gtsam::Pose2 rel_pose_msr(0.0316191379, 0.0247539161, 0.004102182); |
| 221 | |
| 222 | SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(0.4021, 0.286, 0.428))); |
| 223 | SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(sigmas: gtsam::Vector3(4.9821, 4.614, 1.8387))); |
| 224 | |
| 225 | gtsam::Values values; |
| 226 | values.insert(j: key1, val: p1); |
| 227 | values.insert(j: key2, val: p2); |
| 228 | |
| 229 | double prior_outlier = 0.5; |
| 230 | double prior_inlier = 0.5; |
| 231 | |
| 232 | BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 233 | prior_inlier, prior_outlier); |
| 234 | |
| 235 | if (debug) |
| 236 | cout << "==== inside CaseStudy ====" <<endl; |
| 237 | |
| 238 | gtsam::Vector p_inlier_outler = f.calcIndicatorProb(x: values); |
| 239 | |
| 240 | Vector actual_err_unw = f.unwhitenedError(x: values); |
| 241 | Vector actual_err_wh = f.whitenedError(x: values); |
| 242 | |
| 243 | Vector3 actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); |
| 244 | Vector3 actual_err_wh_outlier = Vector3(actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); |
| 245 | |
| 246 | if (debug){ |
| 247 | cout << "p_inlier_outler: " <<p_inlier_outler[0]<<", " <<p_inlier_outler[1]<<endl; |
| 248 | cout<<"actual_err_unw: " <<actual_err_unw[0]<<", " <<actual_err_unw[1]<<", " <<actual_err_unw[2]<<endl; |
| 249 | cout<<"actual_err_wh_inlier: " <<actual_err_wh_inlier[0]<<", " <<actual_err_wh_inlier[1]<<", " <<actual_err_wh_inlier[2]<<endl; |
| 250 | cout<<"actual_err_wh_outlier: " <<actual_err_wh_outlier[0]<<", " <<actual_err_wh_outlier[1]<<", " <<actual_err_wh_outlier[2]<<endl; |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | |
| 255 | ///* ************************************************************************** */ |
| 256 | TEST (BetweenFactorEM, updateNoiseModel ) { |
| 257 | gtsam::Key key1(1); |
| 258 | gtsam::Key key2(2); |
| 259 | |
| 260 | gtsam::Pose2 p1(10.0, 15.0, 0.1); |
| 261 | gtsam::Pose2 p2(15.0, 15.0, 0.3); |
| 262 | gtsam::Pose2 noise(0.5, 0.4, 0.01); |
| 263 | gtsam::Pose2 rel_pose_ideal = p1.between(g: p2); |
| 264 | gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(g: noise); |
| 265 | |
| 266 | SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(sigmas: Vector3(1.5, 2.5, 4.05))); |
| 267 | SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(sigmas: Vector3(50.0, 50.0, 10.0))); |
| 268 | |
| 269 | gtsam::Values values; |
| 270 | values.insert(j: key1, val: p1); |
| 271 | values.insert(j: key2, val: p2); |
| 272 | |
| 273 | double prior_outlier = 0.0; |
| 274 | double prior_inlier = 1.0; |
| 275 | |
| 276 | BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, |
| 277 | prior_inlier, prior_outlier); |
| 278 | |
| 279 | SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(dim: 3, sigma: 1e2)); |
| 280 | |
| 281 | NonlinearFactorGraph graph; |
| 282 | graph.addPrior(key: key1, prior: p1, model); |
| 283 | graph.addPrior(key: key2, prior: p2, model); |
| 284 | |
| 285 | f.updateNoiseModels(values, graph); |
| 286 | |
| 287 | SharedGaussian model_inlier_new = f.get_model_inlier(); |
| 288 | SharedGaussian model_outlier_new = f.get_model_outlier(); |
| 289 | |
| 290 | // model_inlier->print("model_inlier:"); |
| 291 | // model_outlier->print("model_outlier:"); |
| 292 | // model_inlier_new->print("model_inlier_new:"); |
| 293 | // model_outlier_new->print("model_outlier_new:"); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | // #endif |
| 298 | |
| 299 | /* ************************************************************************* */ |
| 300 | int main() { TestResult tr; return TestRegistry::runAllTests(result&: tr);} |
| 301 | /* ************************************************************************* */ |
| 302 | |