| 1 | /** |
| 2 | * @file PoseRTV.h |
| 3 | * @brief Pose3 with translational velocity |
| 4 | * @author Alex Cunningham |
| 5 | */ |
| 6 | |
| 7 | #pragma once |
| 8 | |
| 9 | #include <gtsam_unstable/dllexport.h> |
| 10 | #include <gtsam/geometry/Pose3.h> |
| 11 | #include <gtsam/base/ProductLieGroup.h> |
| 12 | |
| 13 | namespace gtsam { |
| 14 | |
| 15 | /// Syntactic sugar to clarify components |
| 16 | typedef Vector3 Velocity3; |
| 17 | |
| 18 | /** |
| 19 | * Robot state for use with IMU measurements |
| 20 | * - contains translation, translational velocity and rotation |
| 21 | * TODO(frank): Alex should deprecate/move to project |
| 22 | */ |
| 23 | class GTSAM_UNSTABLE_EXPORT PoseRTV : public ProductLieGroup<Pose3,Velocity3> { |
| 24 | protected: |
| 25 | |
| 26 | typedef ProductLieGroup<Pose3,Velocity3> Base; |
| 27 | typedef OptionalJacobian<9, 9> ChartJacobian; |
| 28 | |
| 29 | public: |
| 30 | |
| 31 | // constructors - with partial versions |
| 32 | PoseRTV() {} |
| 33 | PoseRTV(const Point3& t, const Rot3& rot, const Velocity3& vel) |
| 34 | : Base(Pose3(rot, t), vel) {} |
| 35 | PoseRTV(const Rot3& rot, const Point3& t, const Velocity3& vel) |
| 36 | : Base(Pose3(rot, t), vel) {} |
| 37 | explicit PoseRTV(const Point3& t) |
| 38 | : Base(Pose3(Rot3(), t),Vector3::Zero()) {} |
| 39 | PoseRTV(const Pose3& pose, const Velocity3& vel) |
| 40 | : Base(pose, vel) {} |
| 41 | explicit PoseRTV(const Pose3& pose) |
| 42 | : Base(pose,Vector3::Zero()) {} |
| 43 | |
| 44 | // Construct from Base |
| 45 | PoseRTV(const Base& base) |
| 46 | : Base(base) {} |
| 47 | |
| 48 | /** build from components - useful for data files */ |
| 49 | PoseRTV(double roll, double pitch, double yaw, double x, double y, double z, |
| 50 | double vx, double vy, double vz); |
| 51 | |
| 52 | /** build from single vector - useful for Matlab - in RtV format */ |
| 53 | explicit PoseRTV(const Vector& v); |
| 54 | |
| 55 | // access |
| 56 | const Pose3& pose() const { return first; } |
| 57 | const Velocity3& v() const { return second; } |
| 58 | const Point3& t() const { return pose().translation(); } |
| 59 | const Rot3& R() const { return pose().rotation(); } |
| 60 | |
| 61 | // longer function names |
| 62 | const Point3& translation() const { return pose().translation(); } |
| 63 | const Rot3& rotation() const { return pose().rotation(); } |
| 64 | const Velocity3& velocity() const { return second; } |
| 65 | |
| 66 | // Access to vector for ease of use with Matlab |
| 67 | // and avoidance of Point3 |
| 68 | Vector vector() const; |
| 69 | Vector translationVec() const { return pose().translation(); } |
| 70 | const Velocity3& velocityVec() const { return velocity(); } |
| 71 | |
| 72 | // testable |
| 73 | bool equals(const PoseRTV& other, double tol=1e-6) const; |
| 74 | void print(const std::string& s="" ) const; |
| 75 | |
| 76 | /// @name Manifold |
| 77 | /// @{ |
| 78 | using Base::dimension; |
| 79 | using Base::dim; |
| 80 | using Base::Dim; |
| 81 | using Base::retract; |
| 82 | using Base::localCoordinates; |
| 83 | using Base::LocalCoordinates; |
| 84 | /// @} |
| 85 | |
| 86 | /// @name measurement functions |
| 87 | /// @{ |
| 88 | |
| 89 | /** range between translations */ |
| 90 | double range(const PoseRTV& other, |
| 91 | OptionalJacobian<1,9> H1={}, |
| 92 | OptionalJacobian<1,9> H2={}) const; |
| 93 | /// @} |
| 94 | |
| 95 | /// @name IMU-specific |
| 96 | /// @{ |
| 97 | |
| 98 | /// Dynamics integrator for ground robots |
| 99 | /// Always move from time 1 to time 2 |
| 100 | PoseRTV planarDynamics(double vel_rate, double heading_rate, double max_accel, double dt) const; |
| 101 | |
| 102 | /// Simulates flying robot with simple flight model |
| 103 | /// Integrates state x1 -> x2 given controls |
| 104 | /// x1 = {p1, r1, v1}, x2 = {p2, r2, v2}, all in global coordinates |
| 105 | /// @return x2 |
| 106 | PoseRTV flyingDynamics(double pitch_rate, double heading_rate, double lift_control, double dt) const; |
| 107 | |
| 108 | /// General Dynamics update - supply control inputs in body frame |
| 109 | PoseRTV generalDynamics(const Vector& accel, const Vector& gyro, double dt) const; |
| 110 | |
| 111 | /// Dynamics predictor for both ground and flying robots, given states at 1 and 2 |
| 112 | /// Always move from time 1 to time 2 |
| 113 | /// @return imu measurement, as [accel, gyro] |
| 114 | Vector6 imuPrediction(const PoseRTV& x2, double dt) const; |
| 115 | |
| 116 | /// predict measurement and where Point3 for x2 should be, as a way |
| 117 | /// of enforcing a velocity constraint |
| 118 | /// This version splits out the rotation and velocity for x2 |
| 119 | Point3 translationIntegration(const Rot3& r2, const Velocity3& v2, double dt) const; |
| 120 | |
| 121 | /// predict measurement and where Point3 for x2 should be, as a way |
| 122 | /// of enforcing a velocity constraint |
| 123 | /// This version takes a full PoseRTV, but ignores the existing translation for x2 |
| 124 | inline Point3 translationIntegration(const PoseRTV& x2, double dt) const { |
| 125 | return translationIntegration(r2: x2.rotation(), v2: x2.velocity(), dt); |
| 126 | } |
| 127 | |
| 128 | /// @return a vector for Matlab compatibility |
| 129 | inline Vector translationIntegrationVec(const PoseRTV& x2, double dt) const { |
| 130 | return translationIntegration(x2, dt); |
| 131 | } |
| 132 | |
| 133 | /** |
| 134 | * Apply transform to this pose, with optional derivatives |
| 135 | * equivalent to: |
| 136 | * local = trans.transformFrom(global, Dtrans, Dglobal) |
| 137 | * |
| 138 | * Note: the transform jacobian convention is flipped |
| 139 | */ |
| 140 | PoseRTV transformed_from(const Pose3& trans, |
| 141 | ChartJacobian Dglobal = {}, |
| 142 | OptionalJacobian<9, 6> Dtrans = {}) const; |
| 143 | |
| 144 | /// @} |
| 145 | /// @name Utility functions |
| 146 | /// @{ |
| 147 | |
| 148 | /// RRTMbn - Function computes the rotation rate transformation matrix from |
| 149 | /// body axis rates to euler angle (global) rates |
| 150 | static Matrix RRTMbn(const Vector3& euler); |
| 151 | static Matrix RRTMbn(const Rot3& att); |
| 152 | |
| 153 | /// RRTMnb - Function computes the rotation rate transformation matrix from |
| 154 | /// euler angle rates to body axis rates |
| 155 | static Matrix RRTMnb(const Vector3& euler); |
| 156 | static Matrix RRTMnb(const Rot3& att); |
| 157 | /// @} |
| 158 | |
| 159 | private: |
| 160 | #if GTSAM_ENABLE_BOOST_SERIALIZATION |
| 161 | /** Serialization function */ |
| 162 | friend class boost::serialization::access; |
| 163 | template<class Archive> |
| 164 | void serialize(Archive & ar, const unsigned int /*version*/) { |
| 165 | ar & BOOST_SERIALIZATION_NVP(first); |
| 166 | ar & BOOST_SERIALIZATION_NVP(second); |
| 167 | } |
| 168 | #endif |
| 169 | }; |
| 170 | |
| 171 | |
| 172 | template<> |
| 173 | struct traits<PoseRTV> : public internal::LieGroup<PoseRTV> {}; |
| 174 | |
| 175 | // Define Range functor specializations that are used in RangeFactor |
| 176 | template <typename A1, typename A2> struct Range; |
| 177 | |
| 178 | template<> |
| 179 | struct Range<PoseRTV, PoseRTV> : HasRange<PoseRTV, PoseRTV, double> {}; |
| 180 | |
| 181 | } // \namespace gtsam |
| 182 | |