| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------1------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file ProductLieGroup.h |
| 14 | * @date May, 2015 |
| 15 | * @author Frank Dellaert |
| 16 | * @brief Group product of two Lie Groups |
| 17 | */ |
| 18 | |
| 19 | #pragma once |
| 20 | |
| 21 | #include <gtsam/base/Lie.h> |
| 22 | #include <utility> // pair |
| 23 | |
| 24 | namespace gtsam { |
| 25 | |
| 26 | /// Template to construct the product Lie group of two other Lie groups |
| 27 | /// Assumes Lie group structure for G and H |
| 28 | template<typename G, typename H> |
| 29 | class ProductLieGroup: public std::pair<G, H> { |
| 30 | GTSAM_CONCEPT_ASSERT(IsLieGroup<G>); |
| 31 | GTSAM_CONCEPT_ASSERT(IsLieGroup<H>); |
| 32 | typedef std::pair<G, H> Base; |
| 33 | |
| 34 | protected: |
| 35 | constexpr static const size_t dimension1 = traits<G>::dimension; |
| 36 | constexpr static const size_t dimension2 = traits<H>::dimension; |
| 37 | |
| 38 | public: |
| 39 | /// Default constructor yields identity |
| 40 | ProductLieGroup():Base(traits<G>::Identity(),traits<H>::Identity()) {} |
| 41 | |
| 42 | // Construct from two subgroup elements |
| 43 | ProductLieGroup(const G& g, const H& h):Base(g,h) {} |
| 44 | |
| 45 | // Construct from base |
| 46 | ProductLieGroup(const Base& base):Base(base) {} |
| 47 | |
| 48 | /// @name Group |
| 49 | /// @{ |
| 50 | typedef multiplicative_group_tag group_flavor; |
| 51 | static ProductLieGroup Identity() {return ProductLieGroup();} |
| 52 | |
| 53 | ProductLieGroup operator*(const ProductLieGroup& other) const { |
| 54 | return ProductLieGroup(traits<G>::Compose(this->first,other.first), |
| 55 | traits<H>::Compose(this->second,other.second)); |
| 56 | } |
| 57 | ProductLieGroup inverse() const { |
| 58 | return ProductLieGroup(traits<G>::Inverse(this->first), traits<H>::Inverse(this->second)); |
| 59 | } |
| 60 | ProductLieGroup compose(const ProductLieGroup& g) const { |
| 61 | return (*this) * g; |
| 62 | } |
| 63 | ProductLieGroup between(const ProductLieGroup& g) const { |
| 64 | return this->inverse() * g; |
| 65 | } |
| 66 | /// @} |
| 67 | |
| 68 | /// @name Manifold |
| 69 | /// @{ |
| 70 | inline constexpr static size_t dimension = dimension1 + dimension2; |
| 71 | inline static size_t Dim() { return dimension; } |
| 72 | inline size_t dim() const { return dimension; } |
| 73 | |
| 74 | using TangentVector = Eigen::Matrix<double, static_cast<int>(dimension), 1>; |
| 75 | using ChartJacobian = OptionalJacobian<dimension, dimension>; |
| 76 | |
| 77 | ProductLieGroup retract(const TangentVector& v, // |
| 78 | ChartJacobian H1 = {}, ChartJacobian H2 = {}) const { |
| 79 | if (H1||H2) throw std::runtime_error("ProductLieGroup::retract derivatives not implemented yet" ); |
| 80 | G g = traits<G>::Retract(this->first, v.template head<dimension1>()); |
| 81 | H h = traits<H>::Retract(this->second, v.template tail<dimension2>()); |
| 82 | return ProductLieGroup(g,h); |
| 83 | } |
| 84 | TangentVector localCoordinates(const ProductLieGroup& g, // |
| 85 | ChartJacobian H1 = {}, ChartJacobian H2 = {}) const { |
| 86 | if (H1||H2) throw std::runtime_error("ProductLieGroup::localCoordinates derivatives not implemented yet" ); |
| 87 | typename traits<G>::TangentVector v1 = traits<G>::Local(this->first, g.first); |
| 88 | typename traits<H>::TangentVector v2 = traits<H>::Local(this->second, g.second); |
| 89 | TangentVector v; |
| 90 | v << v1, v2; |
| 91 | return v; |
| 92 | } |
| 93 | /// @} |
| 94 | |
| 95 | /// @name Lie Group |
| 96 | /// @{ |
| 97 | protected: |
| 98 | using Jacobian = Eigen::Matrix<double, static_cast<int>(dimension), static_cast<int>(dimension)>; |
| 99 | using Jacobian1 = Eigen::Matrix<double, static_cast<int>(dimension1), static_cast<int>(dimension1)>; |
| 100 | using Jacobian2 = Eigen::Matrix<double, static_cast<int>(dimension2), static_cast<int>(dimension2)>; |
| 101 | |
| 102 | public: |
| 103 | ProductLieGroup compose(const ProductLieGroup& other, ChartJacobian H1, |
| 104 | ChartJacobian H2 = {}) const { |
| 105 | Jacobian1 D_g_first; Jacobian2 D_h_second; |
| 106 | G g = traits<G>::Compose(this->first,other.first, H1 ? &D_g_first : 0); |
| 107 | H h = traits<H>::Compose(this->second,other.second, H1 ? &D_h_second : 0); |
| 108 | if (H1) { |
| 109 | H1->setZero(); |
| 110 | H1->template topLeftCorner<dimension1,dimension1>() = D_g_first; |
| 111 | H1->template bottomRightCorner<dimension2,dimension2>() = D_h_second; |
| 112 | } |
| 113 | if (H2) *H2 = Jacobian::Identity(); |
| 114 | return ProductLieGroup(g,h); |
| 115 | } |
| 116 | ProductLieGroup between(const ProductLieGroup& other, ChartJacobian H1, |
| 117 | ChartJacobian H2 = {}) const { |
| 118 | Jacobian1 D_g_first; Jacobian2 D_h_second; |
| 119 | G g = traits<G>::Between(this->first,other.first, H1 ? &D_g_first : 0); |
| 120 | H h = traits<H>::Between(this->second,other.second, H1 ? &D_h_second : 0); |
| 121 | if (H1) { |
| 122 | H1->setZero(); |
| 123 | H1->template topLeftCorner<dimension1,dimension1>() = D_g_first; |
| 124 | H1->template bottomRightCorner<dimension2,dimension2>() = D_h_second; |
| 125 | } |
| 126 | if (H2) *H2 = Jacobian::Identity(); |
| 127 | return ProductLieGroup(g,h); |
| 128 | } |
| 129 | ProductLieGroup inverse(ChartJacobian D) const { |
| 130 | Jacobian1 D_g_first; Jacobian2 D_h_second; |
| 131 | G g = traits<G>::Inverse(this->first, D ? &D_g_first : 0); |
| 132 | H h = traits<H>::Inverse(this->second, D ? &D_h_second : 0); |
| 133 | if (D) { |
| 134 | D->setZero(); |
| 135 | D->template topLeftCorner<dimension1,dimension1>() = D_g_first; |
| 136 | D->template bottomRightCorner<dimension2,dimension2>() = D_h_second; |
| 137 | } |
| 138 | return ProductLieGroup(g,h); |
| 139 | } |
| 140 | static ProductLieGroup Expmap(const TangentVector& v, ChartJacobian Hv = {}) { |
| 141 | Jacobian1 D_g_first; Jacobian2 D_h_second; |
| 142 | G g = traits<G>::Expmap(v.template head<dimension1>(), Hv ? &D_g_first : 0); |
| 143 | H h = traits<H>::Expmap(v.template tail<dimension2>(), Hv ? &D_h_second : 0); |
| 144 | if (Hv) { |
| 145 | Hv->setZero(); |
| 146 | Hv->template topLeftCorner<dimension1,dimension1>() = D_g_first; |
| 147 | Hv->template bottomRightCorner<dimension2,dimension2>() = D_h_second; |
| 148 | } |
| 149 | return ProductLieGroup(g,h); |
| 150 | } |
| 151 | static TangentVector Logmap(const ProductLieGroup& p, ChartJacobian Hp = {}) { |
| 152 | Jacobian1 D_g_first; Jacobian2 D_h_second; |
| 153 | typename traits<G>::TangentVector v1 = traits<G>::Logmap(p.first, Hp ? &D_g_first : 0); |
| 154 | typename traits<H>::TangentVector v2 = traits<H>::Logmap(p.second, Hp ? &D_h_second : 0); |
| 155 | TangentVector v; |
| 156 | v << v1, v2; |
| 157 | if (Hp) { |
| 158 | Hp->setZero(); |
| 159 | Hp->template topLeftCorner<dimension1,dimension1>() = D_g_first; |
| 160 | Hp->template bottomRightCorner<dimension2,dimension2>() = D_h_second; |
| 161 | } |
| 162 | return v; |
| 163 | } |
| 164 | static TangentVector LocalCoordinates(const ProductLieGroup& p, ChartJacobian Hp = {}) { |
| 165 | return Logmap(p, Hp); |
| 166 | } |
| 167 | ProductLieGroup expmap(const TangentVector& v) const { |
| 168 | return compose(ProductLieGroup::Expmap(v)); |
| 169 | } |
| 170 | TangentVector logmap(const ProductLieGroup& g) const { |
| 171 | return ProductLieGroup::Logmap(p: between(g)); |
| 172 | } |
| 173 | Jacobian AdjointMap() const { |
| 174 | const auto& adjG = traits<G>::AdjointMap(this->first); |
| 175 | const auto& adjH = traits<H>::AdjointMap(this->second); |
| 176 | size_t d1 = adjG.rows(), d2 = adjH.rows(); |
| 177 | Matrix adj = Matrix::Zero(rows: d1 + d2, cols: d1 + d2); |
| 178 | adj.block(startRow: 0, startCol: 0, blockRows: d1, blockCols: d1) = adjG; |
| 179 | adj.block(startRow: d1, startCol: d1, blockRows: d2, blockCols: d2) = adjH; |
| 180 | return adj; |
| 181 | } |
| 182 | /// @} |
| 183 | |
| 184 | }; |
| 185 | |
| 186 | // Define any direct product group to be a model of the multiplicative Group concept |
| 187 | template<typename G, typename H> |
| 188 | struct traits<ProductLieGroup<G, H> > : internal::LieGroupTraits<ProductLieGroup<G, H> > {}; |
| 189 | |
| 190 | } // namespace gtsam |
| 191 | |
| 192 | |