| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file StereoVOExample_large.cpp |
| 14 | * @brief A stereo visual odometry example |
| 15 | * @date May 25, 2014 |
| 16 | * @author Stephen Camp |
| 17 | */ |
| 18 | |
| 19 | |
| 20 | /** |
| 21 | * A 3D stereo visual odometry example |
| 22 | * - robot starts at origin |
| 23 | * -moves forward, taking periodic stereo measurements |
| 24 | * -takes stereo readings of many landmarks |
| 25 | */ |
| 26 | |
| 27 | #include <gtsam/geometry/Pose3.h> |
| 28 | #include <gtsam/geometry/Cal3_S2Stereo.h> |
| 29 | #include <gtsam/nonlinear/Values.h> |
| 30 | #include <gtsam/nonlinear/utilities.h> |
| 31 | #include <gtsam/nonlinear/NonlinearEquality.h> |
| 32 | #include <gtsam/nonlinear/NonlinearFactorGraph.h> |
| 33 | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> |
| 34 | #include <gtsam/inference/Symbol.h> |
| 35 | #include <gtsam/slam/StereoFactor.h> |
| 36 | #include <gtsam/slam/dataset.h> |
| 37 | |
| 38 | #include <string> |
| 39 | #include <fstream> |
| 40 | #include <iostream> |
| 41 | |
| 42 | using namespace std; |
| 43 | using namespace gtsam; |
| 44 | |
| 45 | int main(int argc, char** argv) { |
| 46 | Values initial_estimate; |
| 47 | NonlinearFactorGraph graph; |
| 48 | const auto model = noiseModel::Isotropic::Sigma(dim: 3, sigma: 1); |
| 49 | |
| 50 | string calibration_loc = findExampleDataFile(name: "VO_calibration.txt" ); |
| 51 | string pose_loc = findExampleDataFile(name: "VO_camera_poses_large.txt" ); |
| 52 | string factor_loc = findExampleDataFile(name: "VO_stereo_factors_large.txt" ); |
| 53 | |
| 54 | // read camera calibration info from file |
| 55 | // focal lengths fx, fy, skew s, principal point u0, v0, baseline b |
| 56 | double fx, fy, s, u0, v0, b; |
| 57 | ifstream calibration_file(calibration_loc.c_str()); |
| 58 | cout << "Reading calibration info" << endl; |
| 59 | calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; |
| 60 | |
| 61 | // create stereo camera calibration object |
| 62 | const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx, fy, s, u0, v0, b)); |
| 63 | |
| 64 | ifstream pose_file(pose_loc.c_str()); |
| 65 | cout << "Reading camera poses" << endl; |
| 66 | int pose_id; |
| 67 | MatrixRowMajor m(4, 4); |
| 68 | // read camera pose parameters and use to make initial estimates of camera |
| 69 | // poses |
| 70 | while (pose_file >> pose_id) { |
| 71 | for (int i = 0; i < 16; i++) { |
| 72 | pose_file >> m.data()[i]; |
| 73 | } |
| 74 | initial_estimate.insert(j: Symbol('x', pose_id), val: Pose3(m)); |
| 75 | } |
| 76 | |
| 77 | // camera and landmark keys |
| 78 | size_t x, l; |
| 79 | |
| 80 | // pixel coordinates uL, uR, v (same for left/right images due to |
| 81 | // rectification) landmark coordinates X, Y, Z in camera frame, resulting from |
| 82 | // triangulation |
| 83 | double uL, uR, v, X, Y, Z; |
| 84 | ifstream factor_file(factor_loc.c_str()); |
| 85 | cout << "Reading stereo factors" << endl; |
| 86 | // read stereo measurement details from file and use to create and add |
| 87 | // GenericStereoFactor objects to the graph representation |
| 88 | while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) { |
| 89 | graph.emplace_shared<GenericStereoFactor<Pose3, Point3> >( |
| 90 | args: StereoPoint2(uL, uR, v), args: model, args: Symbol('x', x), args: Symbol('l', l), args: K); |
| 91 | // if the landmark variable included in this factor has not yet been added |
| 92 | // to the initial variable value estimate, add it |
| 93 | if (!initial_estimate.exists(j: Symbol('l', l))) { |
| 94 | Pose3 camPose = initial_estimate.at<Pose3>(j: Symbol('x', x)); |
| 95 | // transformFrom() transforms the input Point3 from the camera pose space, |
| 96 | // camPose, to the global space |
| 97 | Point3 worldPoint = camPose.transformFrom(point: Point3(X, Y, Z)); |
| 98 | initial_estimate.insert(j: Symbol('l', l), val: worldPoint); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | Pose3 first_pose = initial_estimate.at<Pose3>(j: Symbol('x', 1)); |
| 103 | // constrain the first pose such that it cannot change from its original value |
| 104 | // during optimization |
| 105 | // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky |
| 106 | // QR is much slower than Cholesky, but numerically more stable |
| 107 | graph.emplace_shared<NonlinearEquality<Pose3> >(args: Symbol('x', 1), args&: first_pose); |
| 108 | |
| 109 | cout << "Optimizing" << endl; |
| 110 | // create Levenberg-Marquardt optimizer to optimize the factor graph |
| 111 | LevenbergMarquardtParams params; |
| 112 | params.orderingType = Ordering::METIS; |
| 113 | LevenbergMarquardtOptimizer optimizer(graph, initial_estimate, params); |
| 114 | Values result = optimizer.optimize(); |
| 115 | |
| 116 | cout << "Final result sample:" << endl; |
| 117 | Values pose_values = utilities::allPose3s(values: result); |
| 118 | pose_values.print(str: "Final camera poses:\n" ); |
| 119 | |
| 120 | return 0; |
| 121 | } |
| 122 | |