| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | * -------------------------------------------------------------------------- */ |
| 10 | |
| 11 | /** |
| 12 | * @file SolverComparer.cpp |
| 13 | * @brief Incremental and batch solving, timing, and accuracy comparisons |
| 14 | * @author Richard Roberts |
| 15 | * @date August, 2013 |
| 16 | * |
| 17 | * Here is an example. Below, to run in batch mode, we first generate an initialization in incremental mode. |
| 18 | * |
| 19 | * Solve in incremental and write to file w_inc: |
| 20 | * ./SolverComparer --incremental -d w10000 -o w_inc |
| 21 | * |
| 22 | * You can then perturb that initialization to get batch something to optimize. |
| 23 | * Read in w_inc, perturb it with noise of stddev 0.6, and write to w_pert: |
| 24 | * ./SolverComparer --perturb 0.6 -i w_inc -o w_pert |
| 25 | * |
| 26 | * Then optimize with batch, read in w_pert, solve in batch, and write to w_batch: |
| 27 | * ./SolverComparer --batch -d w10000 -i w_pert -o w_batch |
| 28 | * |
| 29 | * And finally compare solutions in w_inc and w_batch to check that batch converged to the global minimum |
| 30 | * ./SolverComparer --compare w_inc w_batch |
| 31 | * |
| 32 | */ |
| 33 | |
| 34 | #include <gtsam/slam/BetweenFactor.h> |
| 35 | #include <gtsam/sam/BearingRangeFactor.h> |
| 36 | #include <gtsam/slam/dataset.h> |
| 37 | #include <gtsam/geometry/Pose2.h> |
| 38 | #include <gtsam/nonlinear/ISAM2.h> |
| 39 | #include <gtsam/nonlinear/GaussNewtonOptimizer.h> |
| 40 | #include <gtsam/nonlinear/Marginals.h> |
| 41 | #include <gtsam/linear/GaussianJunctionTree.h> |
| 42 | #include <gtsam/linear/GaussianEliminationTree.h> |
| 43 | #include <gtsam/inference/Symbol.h> |
| 44 | #include <gtsam/base/timing.h> |
| 45 | #include <gtsam/base/treeTraversal-inst.h> |
| 46 | #include <gtsam/config.h> // for GTSAM_USE_TBB |
| 47 | |
| 48 | #include <boost/archive/binary_iarchive.hpp> |
| 49 | #include <boost/archive/binary_oarchive.hpp> |
| 50 | #include <boost/program_options.hpp> |
| 51 | #include <boost/range/algorithm/set_algorithm.hpp> |
| 52 | |
| 53 | #include <fstream> |
| 54 | #include <iostream> |
| 55 | #include <random> |
| 56 | |
| 57 | #ifdef GTSAM_USE_TBB |
| 58 | #include <tbb/task_arena.h> // tbb::task_arena |
| 59 | #include <tbb/task_group.h> // tbb::task_group |
| 60 | #endif |
| 61 | |
| 62 | using namespace std; |
| 63 | using namespace gtsam; |
| 64 | using namespace gtsam::symbol_shorthand; |
| 65 | namespace po = boost::program_options; |
| 66 | namespace br = boost::range; |
| 67 | |
| 68 | typedef Pose2 Pose; |
| 69 | |
| 70 | typedef NoiseModelFactorN<Pose> NM1; |
| 71 | typedef NoiseModelFactorN<Pose,Pose> NM2; |
| 72 | typedef BearingRangeFactor<Pose,Point2> BR; |
| 73 | |
| 74 | double chi2_red(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& config) { |
| 75 | // Compute degrees of freedom (observations - variables) |
| 76 | // In ocaml, +1 was added to the observations to account for the prior, but |
| 77 | // the factor graph already includes a factor for the prior/equality constraint. |
| 78 | // double dof = graph.size() - config.size(); |
| 79 | int graph_dim = 0; |
| 80 | for(const std::shared_ptr<gtsam::NonlinearFactor>& nlf: graph) { |
| 81 | graph_dim += (int)nlf->dim(); |
| 82 | } |
| 83 | double dof = double(graph_dim) - double(config.dim()); // kaess: changed to dim |
| 84 | return 2. * graph.error(values: config) / dof; // kaess: added factor 2, graph.error returns half of actual error |
| 85 | } |
| 86 | |
| 87 | // Global variables (these are only set once at program startup and never modified after) |
| 88 | string outputFile; |
| 89 | string inputFile; |
| 90 | string datasetName; |
| 91 | int firstStep; |
| 92 | int lastStep; |
| 93 | int nThreads; |
| 94 | int relinSkip; |
| 95 | bool incremental; |
| 96 | bool dogleg; |
| 97 | bool batch; |
| 98 | bool compare; |
| 99 | bool perturb; |
| 100 | bool stats; |
| 101 | double perturbationNoise; |
| 102 | string compareFile1, compareFile2; |
| 103 | |
| 104 | Values initial; |
| 105 | NonlinearFactorGraph datasetMeasurements; |
| 106 | |
| 107 | // Run functions for each mode |
| 108 | void runIncremental(); |
| 109 | void runBatch(); |
| 110 | void runCompare(); |
| 111 | void runPerturb(); |
| 112 | void runStats(); |
| 113 | |
| 114 | /* ************************************************************************* */ |
| 115 | int main(int argc, char *argv[]) { |
| 116 | |
| 117 | po::options_description desc("Available options" ); |
| 118 | desc.add_options() |
| 119 | ("help" , "Print help message" ) |
| 120 | ("write-solution,o" , po::value<string>(v: &outputFile)->default_value(v: "" ), "Write graph and solution to the specified file" ) |
| 121 | ("read-solution,i" , po::value<string>(v: &inputFile)->default_value(v: "" ), "Read graph and solution from the specified file" ) |
| 122 | ("dataset,d" , po::value<string>(v: &datasetName)->default_value(v: "" ), "Read a dataset file (if and only if --incremental is used)" ) |
| 123 | ("first-step,f" , po::value<int>(v: &firstStep)->default_value(v: 0), "First step to process from the dataset file" ) |
| 124 | ("last-step,l" , po::value<int>(v: &lastStep)->default_value(v: -1), "Last step to process, or -1 to process until the end of the dataset" ) |
| 125 | ("threads" , po::value<int>(v: &nThreads)->default_value(v: -1), "Number of threads, or -1 to use all processors" ) |
| 126 | ("relinSkip" , po::value<int>(v: &relinSkip)->default_value(v: 10), "Fluid relinearization check every arg steps" ) |
| 127 | ("incremental" , "Run in incremental mode using ISAM2 (default)" ) |
| 128 | ("dogleg" , "When in incremental mode, solve with Dogleg instead of Gauss-Newton in iSAM2" ) |
| 129 | ("batch" , "Run in batch mode, requires an initialization from --read-solution" ) |
| 130 | ("compare" , po::value<vector<string> >()->multitoken(), "Compare two solution files" ) |
| 131 | ("perturb" , po::value<double>(v: &perturbationNoise), "Perturb a solution file with the specified noise" ) |
| 132 | ("stats" , "Gather factorization statistics about the dataset, writes text-file histograms" ) |
| 133 | ; |
| 134 | po::variables_map vm; |
| 135 | po::store(options: po::command_line_parser(argc, argv).options(desc).run(), m&: vm); |
| 136 | po::notify(m&: vm); |
| 137 | |
| 138 | batch = (vm.count(x: "batch" ) > 0); |
| 139 | compare = (vm.count(x: "compare" ) > 0); |
| 140 | perturb = (vm.count(x: "perturb" ) > 0); |
| 141 | stats = (vm.count(x: "stats" ) > 0); |
| 142 | const int modesSpecified = int(batch) + int(compare) + int(perturb) + int(stats); |
| 143 | incremental = (vm.count(x: "incremental" ) > 0 || modesSpecified == 0); |
| 144 | dogleg = (vm.count(x: "dogleg" ) > 0); |
| 145 | if(compare) { |
| 146 | const vector<string>& compareFiles = vm["compare" ].as<vector<string> >(); |
| 147 | if(compareFiles.size() != 2) { |
| 148 | cout << "Must specify two files with --compare" ; |
| 149 | exit(status: 1); |
| 150 | } |
| 151 | compareFile1 = compareFiles[0]; |
| 152 | compareFile2 = compareFiles[1]; |
| 153 | } |
| 154 | |
| 155 | if(modesSpecified > 1) { |
| 156 | cout << "Only one of --incremental, --batch, --compare, --perturb, and --stats may be specified\n" << desc << endl; |
| 157 | exit(status: 1); |
| 158 | } |
| 159 | if((incremental || batch) && datasetName.empty()) { |
| 160 | cout << "In incremental and batch modes, a dataset must be specified\n" << desc << endl; |
| 161 | exit(status: 1); |
| 162 | } |
| 163 | if(!(incremental || batch || stats) && !datasetName.empty()) { |
| 164 | cout << "A dataset may only be specified in incremental or batch modes\n" << desc << endl; |
| 165 | exit(status: 1); |
| 166 | } |
| 167 | if(batch && inputFile.empty()) { |
| 168 | cout << "In batch model, an input file must be specified\n" << desc << endl; |
| 169 | exit(status: 1); |
| 170 | } |
| 171 | if(perturb && (inputFile.empty() || outputFile.empty())) { |
| 172 | cout << "In perturb mode, specify input and output files\n" << desc << endl; |
| 173 | exit(status: 1); |
| 174 | } |
| 175 | if(stats && (datasetName.empty() || inputFile.empty())) { |
| 176 | cout << "In stats mode, specify dataset and input file\n" << desc << endl; |
| 177 | exit(status: 1); |
| 178 | } |
| 179 | |
| 180 | // Read input file |
| 181 | if(!inputFile.empty()) |
| 182 | { |
| 183 | cout << "Reading input file " << inputFile << endl; |
| 184 | std::ifstream readerStream(inputFile.c_str(), ios::binary); |
| 185 | boost::archive::binary_iarchive reader(readerStream); |
| 186 | reader >> initial; |
| 187 | } |
| 188 | |
| 189 | // Read dataset |
| 190 | if(!datasetName.empty()) |
| 191 | { |
| 192 | cout << "Loading dataset " << datasetName << endl; |
| 193 | try { |
| 194 | string datasetFile = findExampleDataFile(name: datasetName); |
| 195 | std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> data = |
| 196 | load2D(filename: datasetFile); |
| 197 | datasetMeasurements = *data.first; |
| 198 | } catch(std::exception& e) { |
| 199 | cout << e.what() << endl; |
| 200 | exit(status: 1); |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | #ifdef GTSAM_USE_TBB |
| 205 | tbb::task_arena arena; |
| 206 | tbb::task_group tg; |
| 207 | if(nThreads > 0) { |
| 208 | cout << "Using " << nThreads << " threads" << endl; |
| 209 | arena.initialize(nThreads); |
| 210 | } else |
| 211 | cout << "Using threads for all processors" << endl; |
| 212 | #else |
| 213 | if(nThreads > 0) { |
| 214 | std::cout << "GTSAM is not compiled with TBB, so threading is disabled and the --threads option cannot be used." << endl; |
| 215 | exit(status: 1); |
| 216 | } |
| 217 | #endif |
| 218 | |
| 219 | #ifdef GTSAM_USE_TBB |
| 220 | arena.execute([&]{ |
| 221 | tg.run_and_wait([&]{ |
| 222 | #endif |
| 223 | // Run mode |
| 224 | if(incremental) |
| 225 | runIncremental(); |
| 226 | else if(batch) |
| 227 | runBatch(); |
| 228 | else if(compare) |
| 229 | runCompare(); |
| 230 | else if(perturb) |
| 231 | runPerturb(); |
| 232 | else if(stats) |
| 233 | runStats(); |
| 234 | #ifdef GTSAM_USE_TBB |
| 235 | }); |
| 236 | }); |
| 237 | #endif |
| 238 | |
| 239 | return 0; |
| 240 | } |
| 241 | |
| 242 | /* ************************************************************************* */ |
| 243 | void runIncremental() |
| 244 | { |
| 245 | ISAM2Params params; |
| 246 | if(dogleg) |
| 247 | params.optimizationParams = ISAM2DoglegParams(); |
| 248 | params.relinearizeSkip = relinSkip; |
| 249 | params.enablePartialRelinearizationCheck = true; |
| 250 | ISAM2 isam2(params); |
| 251 | |
| 252 | // Look for the first measurement to use |
| 253 | cout << "Looking for first measurement from step " << firstStep << endl; |
| 254 | size_t nextMeasurement = 0; |
| 255 | bool havePreviousPose = false; |
| 256 | Key firstPose = 0; |
| 257 | while(nextMeasurement < datasetMeasurements.size()) |
| 258 | { |
| 259 | if(BetweenFactor<Pose>::shared_ptr factor = |
| 260 | std::dynamic_pointer_cast<BetweenFactor<Pose> >(r: datasetMeasurements[nextMeasurement])) |
| 261 | { |
| 262 | Key key1 = factor->key<1>(), key2 = factor->key<2>(); |
| 263 | if(((int)key1 >= firstStep && key1 < key2) || ((int)key2 >= firstStep && key2 < key1)) { |
| 264 | // We found an odometry starting at firstStep |
| 265 | firstPose = std::min(a: key1, b: key2); |
| 266 | break; |
| 267 | } |
| 268 | if(((int)key2 >= firstStep && key1 < key2) || ((int)key1 >= firstStep && key2 < key1)) { |
| 269 | // We found an odometry joining firstStep with a previous pose |
| 270 | havePreviousPose = true; |
| 271 | firstPose = std::max(a: key1, b: key2); |
| 272 | break; |
| 273 | } |
| 274 | } |
| 275 | ++ nextMeasurement; |
| 276 | } |
| 277 | |
| 278 | if(nextMeasurement == datasetMeasurements.size()) { |
| 279 | cout << "The supplied first step is past the end of the dataset" << endl; |
| 280 | exit(status: 1); |
| 281 | } |
| 282 | |
| 283 | // If we didn't find an odometry linking to a previous pose, create a first pose and a prior |
| 284 | if(!havePreviousPose) { |
| 285 | cout << "Looks like " << firstPose << " is the first time step, so adding a prior on it" << endl; |
| 286 | NonlinearFactorGraph newFactors; |
| 287 | Values newVariables; |
| 288 | |
| 289 | newFactors.addPrior(key: firstPose, prior: Pose(), model: noiseModel::Unit::Create(dim: 3)); |
| 290 | newVariables.insert(j: firstPose, val: Pose()); |
| 291 | |
| 292 | isam2.update(newFactors, newTheta: newVariables); |
| 293 | } |
| 294 | |
| 295 | cout << "Playing forward time steps..." << endl; |
| 296 | |
| 297 | for (size_t step = firstPose; |
| 298 | nextMeasurement < datasetMeasurements.size() && (lastStep == -1 || (int)step <= lastStep); |
| 299 | ++step) |
| 300 | { |
| 301 | Values newVariables; |
| 302 | NonlinearFactorGraph newFactors; |
| 303 | |
| 304 | // Collect measurements and new variables for the current step |
| 305 | gttic_(Collect_measurements); |
| 306 | while(nextMeasurement < datasetMeasurements.size()) { |
| 307 | |
| 308 | NonlinearFactor::shared_ptr measurementf = datasetMeasurements[nextMeasurement]; |
| 309 | |
| 310 | if(BetweenFactor<Pose>::shared_ptr factor = |
| 311 | std::dynamic_pointer_cast<BetweenFactor<Pose> >(r: measurementf)) |
| 312 | { |
| 313 | // Stop collecting measurements that are for future steps |
| 314 | if(factor->key<1>() > step || factor->key<2>() > step) |
| 315 | break; |
| 316 | |
| 317 | // Require that one of the nodes is the current one |
| 318 | if(factor->key<1>() != step && factor->key<2>() != step) |
| 319 | throw runtime_error("Problem in data file, out-of-sequence measurements" ); |
| 320 | |
| 321 | // Add a new factor |
| 322 | newFactors.push_back(factor); |
| 323 | const auto& measured = factor->measured(); |
| 324 | |
| 325 | // Initialize the new variable |
| 326 | if(factor->key<1>() > factor->key<2>()) { |
| 327 | if(!newVariables.exists(j: factor->key<1>())) { // Only need to check newVariables since loop closures come after odometry |
| 328 | if(step == 1) |
| 329 | newVariables.insert(j: factor->key<1>(), val: measured.inverse()); |
| 330 | else { |
| 331 | Pose prevPose = isam2.calculateEstimate<Pose>(key: factor->key<2>()); |
| 332 | newVariables.insert(j: factor->key<1>(), val: prevPose * measured.inverse()); |
| 333 | } |
| 334 | } |
| 335 | } else { |
| 336 | if(!newVariables.exists(j: factor->key<2>())) { // Only need to check newVariables since loop closures come after odometry |
| 337 | if(step == 1) |
| 338 | newVariables.insert(j: factor->key<2>(), val: measured); |
| 339 | else { |
| 340 | Pose prevPose = isam2.calculateEstimate<Pose>(key: factor->key<1>()); |
| 341 | newVariables.insert(j: factor->key<2>(), val: prevPose * measured); |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | else if(BearingRangeFactor<Pose, Point2>::shared_ptr factor = |
| 347 | std::dynamic_pointer_cast<BearingRangeFactor<Pose, Point2> >(r: measurementf)) |
| 348 | { |
| 349 | Key poseKey = factor->keys()[0], lmKey = factor->keys()[1]; |
| 350 | |
| 351 | // Stop collecting measurements that are for future steps |
| 352 | if(poseKey > step) |
| 353 | throw runtime_error("Problem in data file, out-of-sequence measurements" ); |
| 354 | |
| 355 | // Add new factor |
| 356 | newFactors.push_back(factor); |
| 357 | |
| 358 | // Initialize new landmark |
| 359 | if(!isam2.getLinearizationPoint().exists(j: lmKey)) |
| 360 | { |
| 361 | Pose pose; |
| 362 | if(isam2.getLinearizationPoint().exists(j: poseKey)) |
| 363 | pose = isam2.calculateEstimate<Pose>(key: poseKey); |
| 364 | else |
| 365 | pose = newVariables.at<Pose>(j: poseKey); |
| 366 | const auto& measured = factor->measured(); |
| 367 | Rot2 measuredBearing = measured.bearing(); |
| 368 | double measuredRange = measured.range(); |
| 369 | newVariables.insert(j: lmKey, |
| 370 | val: pose.transformFrom(point: measuredBearing.rotate(p: Point2(measuredRange, 0.0)))); |
| 371 | } |
| 372 | } |
| 373 | else |
| 374 | { |
| 375 | throw std::runtime_error("Unknown factor type read from data file" ); |
| 376 | } |
| 377 | ++ nextMeasurement; |
| 378 | } |
| 379 | gttoc_(Collect_measurements); |
| 380 | |
| 381 | // Update iSAM2 |
| 382 | try { |
| 383 | gttic_(Update_ISAM2); |
| 384 | isam2.update(newFactors, newTheta: newVariables); |
| 385 | gttoc_(Update_ISAM2); |
| 386 | } catch(std::exception& e) { |
| 387 | cout << e.what() << endl; |
| 388 | exit(status: 1); |
| 389 | } |
| 390 | |
| 391 | if((step - firstPose) % 1000 == 0) { |
| 392 | try { |
| 393 | gttic_(chi2); |
| 394 | Values estimate(isam2.calculateEstimate()); |
| 395 | double chi2 = chi2_red(graph: isam2.getFactorsUnsafe(), config: estimate); |
| 396 | cout << "chi2 = " << chi2 << endl; |
| 397 | gttoc_(chi2); |
| 398 | } catch(std::exception& e) { |
| 399 | cout << e.what() << endl; |
| 400 | exit(status: 1); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | tictoc_finishedIteration_(); |
| 405 | |
| 406 | if((step - firstPose) % 1000 == 0) { |
| 407 | cout << "Step " << step << endl; |
| 408 | tictoc_print_(); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | if(!outputFile.empty()) |
| 413 | { |
| 414 | try { |
| 415 | cout << "Writing output file " << outputFile << endl; |
| 416 | std::ofstream writerStream(outputFile.c_str(), ios::binary); |
| 417 | boost::archive::binary_oarchive writer(writerStream); |
| 418 | Values estimates = isam2.calculateEstimate(); |
| 419 | writer << estimates; |
| 420 | } catch(std::exception& e) { |
| 421 | cout << e.what() << endl; |
| 422 | exit(status: 1); |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | tictoc_print_(); |
| 427 | |
| 428 | // Compute marginals |
| 429 | //try { |
| 430 | // Marginals marginals(graph, values); |
| 431 | // int i=0; |
| 432 | // for (Key key1: boost::adaptors::reverse(values.keys())) { |
| 433 | // int j=0; |
| 434 | // for (Key key12: boost::adaptors::reverse(values.keys())) { |
| 435 | // if(i != j) { |
| 436 | // gttic_(jointMarginalInformation); |
| 437 | // KeyVector keys(2); |
| 438 | // keys[0] = key1; |
| 439 | // keys[1] = key2; |
| 440 | // JointMarginal info = marginals.jointMarginalInformation(keys); |
| 441 | // gttoc_(jointMarginalInformation); |
| 442 | // tictoc_finishedIteration_(); |
| 443 | // } |
| 444 | // ++j; |
| 445 | // if(j >= 50) |
| 446 | // break; |
| 447 | // } |
| 448 | // ++i; |
| 449 | // if(i >= 50) |
| 450 | // break; |
| 451 | // } |
| 452 | // tictoc_print_(); |
| 453 | // for(Key key: values.keys()) { |
| 454 | // gttic_(marginalInformation); |
| 455 | // Matrix info = marginals.marginalInformation(key); |
| 456 | // gttoc_(marginalInformation); |
| 457 | // tictoc_finishedIteration_(); |
| 458 | // ++i; |
| 459 | // } |
| 460 | //} catch(std::exception& e) { |
| 461 | // cout << e.what() << endl; |
| 462 | //} |
| 463 | //tictoc_print_(); |
| 464 | } |
| 465 | |
| 466 | /* ************************************************************************* */ |
| 467 | void runBatch() |
| 468 | { |
| 469 | cout << "Creating batch optimizer..." << endl; |
| 470 | |
| 471 | NonlinearFactorGraph measurements = datasetMeasurements; |
| 472 | measurements.addPrior(key: 0, prior: Pose(), model: noiseModel::Unit::Create(dim: 3)); |
| 473 | |
| 474 | gttic_(Create_optimizer); |
| 475 | GaussNewtonParams params; |
| 476 | params.linearSolverType = NonlinearOptimizerParams::MULTIFRONTAL_CHOLESKY; |
| 477 | GaussNewtonOptimizer optimizer(measurements, initial, params); |
| 478 | gttoc_(Create_optimizer); |
| 479 | double lastError; |
| 480 | do { |
| 481 | lastError = optimizer.error(); |
| 482 | gttic_(Iterate_optimizer); |
| 483 | optimizer.iterate(); |
| 484 | gttoc_(Iterate_optimizer); |
| 485 | cout << "Error: " << lastError << " -> " << optimizer.error() /*<< ", lambda: " << optimizer.lambda()*/ << endl; |
| 486 | gttic_(chi2); |
| 487 | double chi2 = chi2_red(graph: measurements, config: optimizer.values()); |
| 488 | cout << "chi2 = " << chi2 << endl; |
| 489 | gttoc_(chi2); |
| 490 | } while(!checkConvergence(relativeErrorTreshold: optimizer.params().relativeErrorTol, |
| 491 | absoluteErrorTreshold: optimizer.params().absoluteErrorTol, errorThreshold: optimizer.params().errorTol, |
| 492 | currentError: lastError, newError: optimizer.error(), verbosity: optimizer.params().verbosity)); |
| 493 | |
| 494 | tictoc_finishedIteration_(); |
| 495 | tictoc_print_(); |
| 496 | |
| 497 | if(!outputFile.empty()) |
| 498 | { |
| 499 | try { |
| 500 | cout << "Writing output file " << outputFile << endl; |
| 501 | std::ofstream writerStream(outputFile.c_str(), ios::binary); |
| 502 | boost::archive::binary_oarchive writer(writerStream); |
| 503 | writer << optimizer.values(); |
| 504 | } catch(std::exception& e) { |
| 505 | cout << e.what() << endl; |
| 506 | exit(status: 1); |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /* ************************************************************************* */ |
| 512 | void runCompare() |
| 513 | { |
| 514 | Values soln1, soln2; |
| 515 | |
| 516 | cout << "Reading solution file " << compareFile1 << endl; |
| 517 | { |
| 518 | std::ifstream readerStream(compareFile1.c_str(), ios::binary); |
| 519 | boost::archive::binary_iarchive reader(readerStream); |
| 520 | reader >> soln1; |
| 521 | } |
| 522 | |
| 523 | cout << "Reading solution file " << compareFile2 << endl; |
| 524 | { |
| 525 | std::ifstream readerStream(compareFile2.c_str(), ios::binary); |
| 526 | boost::archive::binary_iarchive reader(readerStream); |
| 527 | reader >> soln2; |
| 528 | } |
| 529 | |
| 530 | // Check solution for equality |
| 531 | cout << "Comparing solutions..." << endl; |
| 532 | KeyVector missingKeys; |
| 533 | br::set_symmetric_difference(rng1: soln1.keys(), rng2: soln2.keys(), out: std::back_inserter(x&: missingKeys)); |
| 534 | if(!missingKeys.empty()) { |
| 535 | cout << " Keys unique to one solution file: " ; |
| 536 | for(size_t i = 0; i < missingKeys.size(); ++i) { |
| 537 | cout << DefaultKeyFormatter(missingKeys[i]); |
| 538 | if(i != missingKeys.size() - 1) |
| 539 | cout << ", " ; |
| 540 | } |
| 541 | cout << endl; |
| 542 | } |
| 543 | KeyVector commonKeys; |
| 544 | br::set_intersection(rng1: soln1.keys(), rng2: soln2.keys(), out: std::back_inserter(x&: commonKeys)); |
| 545 | double maxDiff = 0.0; |
| 546 | for(Key j: commonKeys) |
| 547 | maxDiff = std::max(a: maxDiff, b: soln1.at(j).localCoordinates_(value: soln2.at(j)).norm()); |
| 548 | cout << " Maximum solution difference (norm of logmap): " << maxDiff << endl; |
| 549 | } |
| 550 | |
| 551 | /* ************************************************************************* */ |
| 552 | void runPerturb() |
| 553 | { |
| 554 | // Set up random number generator |
| 555 | std::mt19937 rng; |
| 556 | std::normal_distribution<double> normal(0.0, perturbationNoise); |
| 557 | |
| 558 | // Perturb values |
| 559 | VectorValues noise; |
| 560 | for(const auto& [key, dim]: initial.dims()) |
| 561 | { |
| 562 | Vector noisev(dim); |
| 563 | for(Vector::Index i = 0; i < noisev.size(); ++i) |
| 564 | noisev(i) = normal(rng); |
| 565 | noise.insert(j: key, value: noisev); |
| 566 | } |
| 567 | Values perturbed = initial.retract(delta: noise); |
| 568 | |
| 569 | // Write results |
| 570 | try { |
| 571 | cout << "Writing output file " << outputFile << endl; |
| 572 | std::ofstream writerStream(outputFile.c_str(), ios::binary); |
| 573 | boost::archive::binary_oarchive writer(writerStream); |
| 574 | writer << perturbed; |
| 575 | } catch(std::exception& e) { |
| 576 | cout << e.what() << endl; |
| 577 | exit(status: 1); |
| 578 | } |
| 579 | |
| 580 | } |
| 581 | |
| 582 | /* ************************************************************************* */ |
| 583 | void runStats() |
| 584 | { |
| 585 | cout << "Gathering statistics..." << endl; |
| 586 | GaussianFactorGraph linear = *datasetMeasurements.linearize(linearizationPoint: initial); |
| 587 | GaussianJunctionTree jt(GaussianEliminationTree(linear, Ordering::Colamd(graph: linear))); |
| 588 | treeTraversal::ForestStatistics statistics = treeTraversal::GatherStatistics(forest: jt); |
| 589 | |
| 590 | ofstream file; |
| 591 | |
| 592 | cout << "Writing SolverComparer_Stats_problemSizeHistogram.txt..." << endl; |
| 593 | file.open(s: "SolverComparer_Stats_problemSizeHistogram.txt" ); |
| 594 | treeTraversal::ForestStatistics::Write(outStream&: file, histogram: statistics.problemSizeHistogram); |
| 595 | file.close(); |
| 596 | |
| 597 | cout << "Writing SolverComparer_Stats_numberOfChildrenHistogram.txt..." << endl; |
| 598 | file.open(s: "SolverComparer_Stats_numberOfChildrenHistogram.txt" ); |
| 599 | treeTraversal::ForestStatistics::Write(outStream&: file, histogram: statistics.numberOfChildrenHistogram); |
| 600 | file.close(); |
| 601 | |
| 602 | cout << "Writing SolverComparer_Stats_problemSizeOfSecondLargestChildHistogram.txt..." << endl; |
| 603 | file.open(s: "SolverComparer_Stats_problemSizeOfSecondLargestChildHistogram.txt" ); |
| 604 | treeTraversal::ForestStatistics::Write(outStream&: file, histogram: statistics.problemSizeOfSecondLargestChildHistogram); |
| 605 | file.close(); |
| 606 | } |
| 607 | |