| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file SFMExample_SmartFactor.cpp |
| 14 | * @brief A structure-from-motion problem on a simulated dataset, using smart projection factor |
| 15 | * @author Duy-Nguyen Ta |
| 16 | * @author Jing Dong |
| 17 | * @author Frank Dellaert |
| 18 | */ |
| 19 | |
| 20 | // In GTSAM, measurement functions are represented as 'factors'. |
| 21 | // The factor we used here is SmartProjectionPoseFactor. |
| 22 | // Every smart factor represent a single landmark, seen from multiple cameras. |
| 23 | // The SmartProjectionPoseFactor only optimizes for the poses of a camera, |
| 24 | // not the calibration, which is assumed known. |
| 25 | #include <gtsam/slam/SmartProjectionPoseFactor.h> |
| 26 | |
| 27 | // For an explanation of these headers, see SFMExample.cpp |
| 28 | #include "SFMdata.h" |
| 29 | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> |
| 30 | |
| 31 | using namespace std; |
| 32 | using namespace gtsam; |
| 33 | |
| 34 | // Make the typename short so it looks much cleaner |
| 35 | typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor; |
| 36 | |
| 37 | // create a typedef to the camera type |
| 38 | typedef PinholePose<Cal3_S2> Camera; |
| 39 | |
| 40 | /* ************************************************************************* */ |
| 41 | int main(int argc, char* argv[]) { |
| 42 | |
| 43 | // Define the camera calibration parameters |
| 44 | Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); |
| 45 | |
| 46 | // Define the camera observation noise model |
| 47 | auto measurementNoise = |
| 48 | noiseModel::Isotropic::Sigma(dim: 2, sigma: 1.0); // one pixel in u and v |
| 49 | |
| 50 | // Create the set of ground-truth landmarks and poses |
| 51 | vector<Point3> points = createPoints(); |
| 52 | vector<Pose3> poses = createPoses(); |
| 53 | |
| 54 | // Create a factor graph |
| 55 | NonlinearFactorGraph graph; |
| 56 | |
| 57 | // Simulated measurements from each camera pose, adding them to the factor graph |
| 58 | for (size_t j = 0; j < points.size(); ++j) { |
| 59 | |
| 60 | // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements. |
| 61 | SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K)); |
| 62 | |
| 63 | for (size_t i = 0; i < poses.size(); ++i) { |
| 64 | |
| 65 | // generate the 2D measurement |
| 66 | Camera camera(poses[i], K); |
| 67 | Point2 measurement = camera.project(pw: points[j]); |
| 68 | |
| 69 | // call add() function to add measurement into a single factor, here we need to add: |
| 70 | // 1. the 2D measurement |
| 71 | // 2. the corresponding camera's key |
| 72 | // 3. camera noise model |
| 73 | // 4. camera calibration |
| 74 | smartfactor->add(measured: measurement, key: i); |
| 75 | } |
| 76 | |
| 77 | // insert the smart factor in the graph |
| 78 | graph.push_back(factor: smartfactor); |
| 79 | } |
| 80 | |
| 81 | // Add a prior on pose x0. This indirectly specifies where the origin is. |
| 82 | // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw |
| 83 | auto noise = noiseModel::Diagonal::Sigmas( |
| 84 | sigmas: (Vector(6) << Vector3::Constant(value: 0.1), Vector3::Constant(value: 0.3)).finished()); |
| 85 | graph.addPrior(key: 0, prior: poses[0], model: noise); |
| 86 | |
| 87 | // Because the structure-from-motion problem has a scale ambiguity, the problem is |
| 88 | // still under-constrained. Here we add a prior on the second pose x1, so this will |
| 89 | // fix the scale by indicating the distance between x0 and x1. |
| 90 | // Because these two are fixed, the rest of the poses will be also be fixed. |
| 91 | graph.addPrior(key: 1, prior: poses[1], model: noise); // add directly to graph |
| 92 | |
| 93 | graph.print(str: "Factor Graph:\n" ); |
| 94 | |
| 95 | // Create the initial estimate to the solution |
| 96 | // Intentionally initialize the variables off from the ground truth |
| 97 | Values initialEstimate; |
| 98 | Pose3 delta(Rot3::Rodrigues(wx: -0.1, wy: 0.2, wz: 0.25), Point3(0.05, -0.10, 0.20)); |
| 99 | for (size_t i = 0; i < poses.size(); ++i) |
| 100 | initialEstimate.insert(j: i, val: poses[i].compose(g: delta)); |
| 101 | initialEstimate.print(str: "Initial Estimates:\n" ); |
| 102 | |
| 103 | // Optimize the graph and print results |
| 104 | LevenbergMarquardtOptimizer optimizer(graph, initialEstimate); |
| 105 | Values result = optimizer.optimize(); |
| 106 | result.print(str: "Final results:\n" ); |
| 107 | |
| 108 | // A smart factor represent the 3D point inside the factor, not as a variable. |
| 109 | // The 3D position of the landmark is not explicitly calculated by the optimizer. |
| 110 | // To obtain the landmark's 3D position, we use the "point" method of the smart factor. |
| 111 | Values landmark_result; |
| 112 | for (size_t j = 0; j < points.size(); ++j) { |
| 113 | |
| 114 | // The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first |
| 115 | SmartFactor::shared_ptr smart = std::dynamic_pointer_cast<SmartFactor>(r: graph[j]); |
| 116 | if (smart) { |
| 117 | // The output of point() is in std::optional<Point3>, as sometimes |
| 118 | // the triangulation operation inside smart factor will encounter degeneracy. |
| 119 | auto point = smart->point(values: result); |
| 120 | if (point) // ignore if std::optional return nullptr |
| 121 | landmark_result.insert(j, val: *point); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | landmark_result.print(str: "Landmark results:\n" ); |
| 126 | cout << "final error: " << graph.error(values: result) << endl; |
| 127 | cout << "number of iterations: " << optimizer.iterations() << endl; |
| 128 | |
| 129 | return 0; |
| 130 | } |
| 131 | /* ************************************************************************* */ |
| 132 | |
| 133 | |