| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file SFMExampleExpressions_bal.cpp |
| 14 | * @brief A structure-from-motion example done with Expressions |
| 15 | * @author Frank Dellaert |
| 16 | * @date January 2015 |
| 17 | */ |
| 18 | |
| 19 | /** |
| 20 | * This is the Expression version of SFMExample |
| 21 | * See detailed description of headers there, this focuses on explaining the AD part |
| 22 | */ |
| 23 | |
| 24 | // The two new headers that allow using our Automatic Differentiation Expression framework |
| 25 | #include <gtsam/slam/expressions.h> |
| 26 | #include <gtsam/nonlinear/ExpressionFactorGraph.h> |
| 27 | |
| 28 | // Header order is close to far |
| 29 | #include <gtsam/sfm/SfmData.h> // for loading BAL datasets ! |
| 30 | #include <gtsam/slam/dataset.h> |
| 31 | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> |
| 32 | #include <gtsam/inference/Symbol.h> |
| 33 | |
| 34 | #include <vector> |
| 35 | |
| 36 | using namespace std; |
| 37 | using namespace gtsam; |
| 38 | using namespace noiseModel; |
| 39 | using symbol_shorthand::C; |
| 40 | using symbol_shorthand::P; |
| 41 | |
| 42 | // An SfmCamera is defined in datase.h as a camera with unknown Cal3Bundler calibration |
| 43 | // and has a total of 9 free parameters |
| 44 | |
| 45 | int main(int argc, char* argv[]) { |
| 46 | // Find default file, but if an argument is given, try loading a file |
| 47 | string filename = findExampleDataFile(name: "dubrovnik-3-7-pre" ); |
| 48 | if (argc > 1) filename = string(argv[1]); |
| 49 | |
| 50 | // Load the SfM data from file |
| 51 | SfmData mydata = SfmData::FromBalFile(filename); |
| 52 | cout << "read " << mydata.numberTracks() << " tracks on " << mydata.numberCameras() << " cameras" << endl; |
| 53 | |
| 54 | // Create a factor graph |
| 55 | ExpressionFactorGraph graph; |
| 56 | |
| 57 | // Here we don't use a PriorFactor but directly the ExpressionFactor class |
| 58 | // First, we create an expression to the pose from the first camera |
| 59 | Expression<SfmCamera> camera0_(C(j: 0)); |
| 60 | // Then, to get its pose: |
| 61 | Pose3_ pose0_(&SfmCamera::getPose, camera0_); |
| 62 | // Finally, we say it should be equal to first guess |
| 63 | graph.addExpressionFactor(h: pose0_, z: mydata.cameras[0].pose(), |
| 64 | R: noiseModel::Isotropic::Sigma(dim: 6, sigma: 0.1)); |
| 65 | |
| 66 | // similarly, we create a prior on the first point |
| 67 | Point3_ point0_(P(j: 0)); |
| 68 | graph.addExpressionFactor(h: point0_, z: mydata.tracks[0].p, |
| 69 | R: noiseModel::Isotropic::Sigma(dim: 3, sigma: 0.1)); |
| 70 | |
| 71 | // We share *one* noiseModel between all projection factors |
| 72 | auto noise = noiseModel::Isotropic::Sigma(dim: 2, sigma: 1.0); // one pixel in u and v |
| 73 | |
| 74 | // Simulated measurements from each camera pose, adding them to the factor |
| 75 | // graph |
| 76 | size_t j = 0; |
| 77 | for (const SfmTrack& track : mydata.tracks) { |
| 78 | // Leaf expression for j^th point |
| 79 | Point3_ point_('p', j); |
| 80 | for (const auto& [i, uv] : track.measurements) { |
| 81 | // Leaf expression for i^th camera |
| 82 | Expression<SfmCamera> camera_(C(j: i)); |
| 83 | // Below an expression for the prediction of the measurement: |
| 84 | Point2_ predict_ = project2<SfmCamera>(camera_, p_: point_); |
| 85 | // Again, here we use an ExpressionFactor |
| 86 | graph.addExpressionFactor(h: predict_, z: uv, R: noise); |
| 87 | } |
| 88 | j += 1; |
| 89 | } |
| 90 | |
| 91 | // Create initial estimate |
| 92 | Values initial; |
| 93 | size_t i = 0; |
| 94 | j = 0; |
| 95 | for (const SfmCamera& camera : mydata.cameras) initial.insert(j: C(j: i++), val: camera); |
| 96 | for (const SfmTrack& track : mydata.tracks) initial.insert(j: P(j: j++), val: track.p); |
| 97 | |
| 98 | /* Optimize the graph and print results */ |
| 99 | Values result; |
| 100 | try { |
| 101 | LevenbergMarquardtParams params; |
| 102 | params.setVerbosity("ERROR" ); |
| 103 | LevenbergMarquardtOptimizer lm(graph, initial, params); |
| 104 | result = lm.optimize(); |
| 105 | } catch (exception& e) { |
| 106 | cout << e.what(); |
| 107 | } |
| 108 | cout << "final error: " << graph.error(values: result) << endl; |
| 109 | |
| 110 | return 0; |
| 111 | } |
| 112 | |