| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file SFMExample.cpp |
| 14 | * @brief A structure-from-motion problem on a simulated dataset |
| 15 | * @author Duy-Nguyen Ta |
| 16 | */ |
| 17 | |
| 18 | // For loading the data, see the comments therein for scenario (camera rotates around cube) |
| 19 | #include "SFMdata.h" |
| 20 | |
| 21 | // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y). |
| 22 | #include <gtsam/geometry/Point2.h> |
| 23 | |
| 24 | // Each variable in the system (poses and landmarks) must be identified with a unique key. |
| 25 | // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). |
| 26 | // Here we will use Symbols |
| 27 | #include <gtsam/inference/Symbol.h> |
| 28 | |
| 29 | // In GTSAM, measurement functions are represented as 'factors'. Several common factors |
| 30 | // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems. |
| 31 | // Here we will use Projection factors to model the camera's landmark observations. |
| 32 | // Also, we will initialize the robot at some location using a Prior factor. |
| 33 | #include <gtsam/slam/ProjectionFactor.h> |
| 34 | |
| 35 | // When the factors are created, we will add them to a Factor Graph. As the factors we are using |
| 36 | // are nonlinear factors, we will need a Nonlinear Factor Graph. |
| 37 | #include <gtsam/nonlinear/NonlinearFactorGraph.h> |
| 38 | |
| 39 | // Finally, once all of the factors have been added to our factor graph, we will want to |
| 40 | // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values. |
| 41 | // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a |
| 42 | // trust-region method known as Powell's Dogleg |
| 43 | #include <gtsam/nonlinear/DoglegOptimizer.h> |
| 44 | |
| 45 | // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the |
| 46 | // nonlinear functions around an initial linearization point, then solve the linear system |
| 47 | // to update the linearization point. This happens repeatedly until the solver converges |
| 48 | // to a consistent set of variable values. This requires us to specify an initial guess |
| 49 | // for each variable, held in a Values container. |
| 50 | #include <gtsam/nonlinear/Values.h> |
| 51 | |
| 52 | #include <vector> |
| 53 | |
| 54 | using namespace std; |
| 55 | using namespace gtsam; |
| 56 | |
| 57 | /* ************************************************************************* */ |
| 58 | int main(int argc, char* argv[]) { |
| 59 | // Define the camera calibration parameters |
| 60 | auto K = std::make_shared<Cal3_S2>(args: 50.0, args: 50.0, args: 0.0, args: 50.0, args: 50.0); |
| 61 | |
| 62 | // Define the camera observation noise model |
| 63 | auto measurementNoise = |
| 64 | noiseModel::Isotropic::Sigma(dim: 2, sigma: 1.0); // one pixel in u and v |
| 65 | |
| 66 | // Create the set of ground-truth landmarks |
| 67 | vector<Point3> points = createPoints(); |
| 68 | |
| 69 | // Create the set of ground-truth poses |
| 70 | vector<Pose3> poses = createPoses(); |
| 71 | |
| 72 | // Create a factor graph |
| 73 | NonlinearFactorGraph graph; |
| 74 | |
| 75 | // Add a prior on pose x1. This indirectly specifies where the origin is. |
| 76 | auto poseNoise = noiseModel::Diagonal::Sigmas( |
| 77 | sigmas: (Vector(6) << Vector3::Constant(value: 0.1), Vector3::Constant(value: 0.3)) |
| 78 | .finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw |
| 79 | graph.addPrior(key: Symbol('x', 0), prior: poses[0], model: poseNoise); // add directly to graph |
| 80 | |
| 81 | // Simulated measurements from each camera pose, adding them to the factor |
| 82 | // graph |
| 83 | for (size_t i = 0; i < poses.size(); ++i) { |
| 84 | PinholeCamera<Cal3_S2> camera(poses[i], *K); |
| 85 | for (size_t j = 0; j < points.size(); ++j) { |
| 86 | Point2 measurement = camera.project(pw: points[j]); |
| 87 | graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >( |
| 88 | args&: measurement, args&: measurementNoise, args: Symbol('x', i), args: Symbol('l', j), args&: K); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | // Because the structure-from-motion problem has a scale ambiguity, the |
| 93 | // problem is still under-constrained Here we add a prior on the position of |
| 94 | // the first landmark. This fixes the scale by indicating the distance between |
| 95 | // the first camera and the first landmark. All other landmark positions are |
| 96 | // interpreted using this scale. |
| 97 | auto pointNoise = noiseModel::Isotropic::Sigma(dim: 3, sigma: 0.1); |
| 98 | graph.addPrior(key: Symbol('l', 0), prior: points[0], |
| 99 | model: pointNoise); // add directly to graph |
| 100 | graph.print(str: "Factor Graph:\n" ); |
| 101 | |
| 102 | // Create the data structure to hold the initial estimate to the solution |
| 103 | // Intentionally initialize the variables off from the ground truth |
| 104 | Values initialEstimate; |
| 105 | for (size_t i = 0; i < poses.size(); ++i) { |
| 106 | auto corrupted_pose = poses[i].compose( |
| 107 | g: Pose3(Rot3::Rodrigues(wx: -0.1, wy: 0.2, wz: 0.25), Point3(0.05, -0.10, 0.20))); |
| 108 | initialEstimate.insert( |
| 109 | j: Symbol('x', i), val: corrupted_pose); |
| 110 | } |
| 111 | for (size_t j = 0; j < points.size(); ++j) { |
| 112 | Point3 corrupted_point = points[j] + Point3(-0.25, 0.20, 0.15); |
| 113 | initialEstimate.insert<Point3>(j: Symbol('l', j), val: corrupted_point); |
| 114 | } |
| 115 | initialEstimate.print(str: "Initial Estimates:\n" ); |
| 116 | |
| 117 | /* Optimize the graph and print results */ |
| 118 | Values result = DoglegOptimizer(graph, initialEstimate).optimize(); |
| 119 | result.print(str: "Final results:\n" ); |
| 120 | cout << "initial error = " << graph.error(values: initialEstimate) << endl; |
| 121 | cout << "final error = " << graph.error(values: result) << endl; |
| 122 | |
| 123 | return 0; |
| 124 | } |
| 125 | /* ************************************************************************* */ |
| 126 | |
| 127 | |