| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file FisheyeExample.cpp |
| 14 | * @brief A visualSLAM example for the structure-from-motion problem on a |
| 15 | * simulated dataset. This version uses a fisheye camera model and a GaussNewton |
| 16 | * solver to solve the graph in one batch |
| 17 | * @author ghaggin |
| 18 | * @Date Apr 9,2020 |
| 19 | */ |
| 20 | |
| 21 | /** |
| 22 | * A structure-from-motion example with landmarks |
| 23 | * - The landmarks form a 10 meter cube |
| 24 | * - The robot rotates around the landmarks, always facing towards the cube |
| 25 | */ |
| 26 | |
| 27 | // For loading the data |
| 28 | #include "SFMdata.h" |
| 29 | |
| 30 | // Camera observations of landmarks will be stored as Point2 (x, y). |
| 31 | #include <gtsam/geometry/Point2.h> |
| 32 | |
| 33 | // Each variable in the system (poses and landmarks) must be identified with a |
| 34 | // unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols |
| 35 | // (X1, X2, L1). Here we will use Symbols |
| 36 | #include <gtsam/inference/Symbol.h> |
| 37 | |
| 38 | // Use GaussNewtonOptimizer to solve graph |
| 39 | #include <gtsam/nonlinear/GaussNewtonOptimizer.h> |
| 40 | #include <gtsam/nonlinear/NonlinearFactorGraph.h> |
| 41 | #include <gtsam/nonlinear/Values.h> |
| 42 | |
| 43 | // In GTSAM, measurement functions are represented as 'factors'. Several common |
| 44 | // factors have been provided with the library for solving robotics/SLAM/Bundle |
| 45 | // Adjustment problems. Here we will use Projection factors to model the |
| 46 | // camera's landmark observations. Also, we will initialize the robot at some |
| 47 | // location using a Prior factor. |
| 48 | #include <gtsam/geometry/Cal3Fisheye.h> |
| 49 | #include <gtsam/slam/PriorFactor.h> |
| 50 | #include <gtsam/slam/ProjectionFactor.h> |
| 51 | |
| 52 | #include <fstream> |
| 53 | #include <vector> |
| 54 | |
| 55 | using namespace std; |
| 56 | using namespace gtsam; |
| 57 | |
| 58 | using symbol_shorthand::L; // for landmarks |
| 59 | using symbol_shorthand::X; // for poses |
| 60 | |
| 61 | /* ************************************************************************* */ |
| 62 | int main(int argc, char *argv[]) { |
| 63 | // Define the camera calibration parameters |
| 64 | auto K = std::make_shared<Cal3Fisheye>( |
| 65 | args: 278.66, args: 278.48, args: 0.0, args: 319.75, args: 241.96, args: -0.013721808247486035, |
| 66 | args: 0.020727425669427896, args: -0.012786476702685545, args: 0.0025242267320687625); |
| 67 | |
| 68 | // Define the camera observation noise model, 1 pixel stddev |
| 69 | auto measurementNoise = noiseModel::Isotropic::Sigma(dim: 2, sigma: 1.0); |
| 70 | |
| 71 | // Create the set of ground-truth landmarks |
| 72 | const vector<Point3> points = createPoints(); |
| 73 | |
| 74 | // Create the set of ground-truth poses |
| 75 | const vector<Pose3> poses = createPoses(); |
| 76 | |
| 77 | // Create a Factor Graph and Values to hold the new data |
| 78 | NonlinearFactorGraph graph; |
| 79 | Values initialEstimate; |
| 80 | |
| 81 | // Add a prior on pose x0, 0.1 rad on roll,pitch,yaw, and 30cm std on x,y,z |
| 82 | auto posePrior = noiseModel::Diagonal::Sigmas( |
| 83 | sigmas: (Vector(6) << Vector3::Constant(value: 0.1), Vector3::Constant(value: 0.3)).finished()); |
| 84 | graph.emplace_shared<PriorFactor<Pose3>>(args: X(j: 0), args: poses[0], args&: posePrior); |
| 85 | |
| 86 | // Add a prior on landmark l0 |
| 87 | auto pointPrior = noiseModel::Isotropic::Sigma(dim: 3, sigma: 0.1); |
| 88 | graph.emplace_shared<PriorFactor<Point3>>(args: L(j: 0), args: points[0], args&: pointPrior); |
| 89 | |
| 90 | // Add initial guesses to all observed landmarks |
| 91 | // Intentionally initialize the variables off from the ground truth |
| 92 | static const Point3 kDeltaPoint(-0.25, 0.20, 0.15); |
| 93 | for (size_t j = 0; j < points.size(); ++j) |
| 94 | initialEstimate.insert<Point3>(j: L(j), val: points[j] + kDeltaPoint); |
| 95 | |
| 96 | // Loop over the poses, adding the observations to the graph |
| 97 | for (size_t i = 0; i < poses.size(); ++i) { |
| 98 | // Add factors for each landmark observation |
| 99 | for (size_t j = 0; j < points.size(); ++j) { |
| 100 | PinholeCamera<Cal3Fisheye> camera(poses[i], *K); |
| 101 | Point2 measurement = camera.project(pw: points[j]); |
| 102 | graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3Fisheye>>( |
| 103 | args&: measurement, args&: measurementNoise, args: X(j: i), args: L(j), args&: K); |
| 104 | } |
| 105 | |
| 106 | // Add an initial guess for the current pose |
| 107 | // Intentionally initialize the variables off from the ground truth |
| 108 | static const Pose3 kDeltaPose(Rot3::Rodrigues(wx: -0.1, wy: 0.2, wz: 0.25), |
| 109 | Point3(0.05, -0.10, 0.20)); |
| 110 | initialEstimate.insert(j: X(j: i), val: poses[i] * kDeltaPose); |
| 111 | } |
| 112 | |
| 113 | GaussNewtonParams params; |
| 114 | params.setVerbosity("TERMINATION" ); |
| 115 | params.maxIterations = 10000; |
| 116 | |
| 117 | std::cout << "Optimizing the factor graph" << std::endl; |
| 118 | GaussNewtonOptimizer optimizer(graph, initialEstimate, params); |
| 119 | Values result = optimizer.optimize(); |
| 120 | std::cout << "Optimization complete" << std::endl; |
| 121 | |
| 122 | std::cout << "initial error=" << graph.error(values: initialEstimate) << std::endl; |
| 123 | std::cout << "final error=" << graph.error(values: result) << std::endl; |
| 124 | |
| 125 | graph.saveGraph(filename: "examples/vio_batch.dot" , values: result); |
| 126 | |
| 127 | return 0; |
| 128 | } |
| 129 | /* ************************************************************************* */ |
| 130 | |