| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file EssentialViewGraphExample.cpp |
| 14 | * @brief View-graph calibration with essential matrices. |
| 15 | * @author Frank Dellaert |
| 16 | * @date October 2024 |
| 17 | */ |
| 18 | |
| 19 | #include <gtsam/geometry/Cal3f.h> |
| 20 | #include <gtsam/geometry/EssentialMatrix.h> |
| 21 | #include <gtsam/geometry/PinholeCamera.h> |
| 22 | #include <gtsam/geometry/Point2.h> |
| 23 | #include <gtsam/geometry/Point3.h> |
| 24 | #include <gtsam/geometry/Pose3.h> |
| 25 | #include <gtsam/inference/EdgeKey.h> |
| 26 | #include <gtsam/inference/Symbol.h> |
| 27 | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> |
| 28 | #include <gtsam/nonlinear/NonlinearFactorGraph.h> |
| 29 | #include <gtsam/nonlinear/Values.h> |
| 30 | #include <gtsam/sfm/TransferFactor.h> // Contains EssentialTransferFactorK |
| 31 | |
| 32 | #include <vector> |
| 33 | |
| 34 | #include "SFMdata.h" // For createPoints() and posesOnCircle() |
| 35 | |
| 36 | using namespace std; |
| 37 | using namespace gtsam; |
| 38 | using namespace symbol_shorthand; // For K(symbol) |
| 39 | |
| 40 | // Main function |
| 41 | int main(int argc, char* argv[]) { |
| 42 | // Define the camera calibration parameters |
| 43 | Cal3f cal(50.0, 50.0, 50.0); |
| 44 | |
| 45 | // Create the set of 8 ground-truth landmarks |
| 46 | vector<Point3> points = createPoints(); |
| 47 | |
| 48 | // Create the set of 4 ground-truth poses |
| 49 | vector<Pose3> poses = posesOnCircle(num_cameras: 4, R: 30); |
| 50 | |
| 51 | // Calculate ground truth essential matrices, 1 and 2 poses apart |
| 52 | auto E1 = EssentialMatrix::FromPose3(1P2_: poses[0].between(g: poses[1])); |
| 53 | auto E2 = EssentialMatrix::FromPose3(1P2_: poses[0].between(g: poses[2])); |
| 54 | |
| 55 | // Simulate measurements from each camera pose |
| 56 | std::array<std::array<Point2, 8>, 4> p; |
| 57 | for (size_t i = 0; i < 4; ++i) { |
| 58 | PinholeCamera<Cal3f> camera(poses[i], cal); |
| 59 | for (size_t j = 0; j < 8; ++j) { |
| 60 | p[i][j] = camera.project(pw: points[j]); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | // Create the factor graph |
| 65 | NonlinearFactorGraph graph; |
| 66 | using Factor = EssentialTransferFactorK<Cal3f>; |
| 67 | |
| 68 | for (size_t a = 0; a < 4; ++a) { |
| 69 | size_t b = (a + 1) % 4; // Next camera |
| 70 | size_t c = (a + 2) % 4; // Camera after next |
| 71 | |
| 72 | // Vectors to collect tuples for each factor |
| 73 | std::vector<std::tuple<Point2, Point2, Point2>> tuples1, tuples2, tuples3; |
| 74 | |
| 75 | // Collect data for the three factors |
| 76 | for (size_t j = 0; j < 8; ++j) { |
| 77 | tuples1.emplace_back(args&: p[a][j], args&: p[b][j], args&: p[c][j]); |
| 78 | tuples2.emplace_back(args&: p[a][j], args&: p[c][j], args&: p[b][j]); |
| 79 | tuples3.emplace_back(args&: p[c][j], args&: p[b][j], args&: p[a][j]); |
| 80 | } |
| 81 | |
| 82 | // Add transfer factors between views a, b, and c. |
| 83 | graph.emplace_shared<Factor>(args: EdgeKey(a, c), args: EdgeKey(b, c), args&: tuples1); |
| 84 | graph.emplace_shared<Factor>(args: EdgeKey(a, b), args: EdgeKey(b, c), args&: tuples2); |
| 85 | graph.emplace_shared<Factor>(args: EdgeKey(a, c), args: EdgeKey(a, b), args&: tuples3); |
| 86 | } |
| 87 | |
| 88 | // Formatter for printing keys |
| 89 | auto formatter = [](Key key) { |
| 90 | if (Symbol(key).chr() == 'k') { |
| 91 | return (string)Symbol(key); |
| 92 | } else { |
| 93 | EdgeKey edge(key); |
| 94 | return (std::string)edge; |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | graph.print(str: "Factor Graph:\n" , keyFormatter: formatter); |
| 99 | |
| 100 | // Create a delta vector to perturb the ground truth (small perturbation) |
| 101 | Vector5 delta; |
| 102 | delta << 1, 1, 1, 1, 1; |
| 103 | delta *= 1e-2; |
| 104 | |
| 105 | // Create the initial estimate for essential matrices |
| 106 | Values initialEstimate; |
| 107 | for (size_t a = 0; a < 4; ++a) { |
| 108 | size_t b = (a + 1) % 4; // Next camera |
| 109 | size_t c = (a + 2) % 4; // Camera after next |
| 110 | initialEstimate.insert(j: EdgeKey(a, b), val: E1.retract(xi: delta)); |
| 111 | initialEstimate.insert(j: EdgeKey(a, c), val: E2.retract(xi: delta)); |
| 112 | } |
| 113 | |
| 114 | // Insert initial calibrations (using K symbol) |
| 115 | for (size_t i = 0; i < 4; ++i) { |
| 116 | initialEstimate.insert(j: K(j: i), val: cal); |
| 117 | } |
| 118 | |
| 119 | initialEstimate.print(str: "Initial Estimates:\n" , keyFormatter: formatter); |
| 120 | graph.printErrors(values: initialEstimate, str: "Initial Errors:\n" , keyFormatter: formatter); |
| 121 | |
| 122 | // Optimize the graph and print results |
| 123 | LevenbergMarquardtParams params; |
| 124 | params.setlambdaInitial(1000.0); // Initialize lambda to a high value |
| 125 | params.setVerbosityLM("SUMMARY" ); |
| 126 | Values result = |
| 127 | LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize(); |
| 128 | |
| 129 | cout << "Initial error = " << graph.error(values: initialEstimate) << endl; |
| 130 | cout << "Final error = " << graph.error(values: result) << endl; |
| 131 | |
| 132 | result.print(str: "Final Results:\n" , keyFormatter: formatter); |
| 133 | |
| 134 | E1.print(s: "Ground Truth E1:\n" ); |
| 135 | E2.print(s: "Ground Truth E2:\n" ); |
| 136 | |
| 137 | return 0; |
| 138 | } |