| 1 | /* boost random/detail/polynomial.hpp header file |
| 2 | * |
| 3 | * Copyright Steven Watanabe 2014 |
| 4 | * Distributed under the Boost Software License, Version 1.0. (See |
| 5 | * accompanying file LICENSE_1_0.txt or copy at |
| 6 | * http://www.boost.org/LICENSE_1_0.txt) |
| 7 | * |
| 8 | * See http://www.boost.org for most recent version including documentation. |
| 9 | * |
| 10 | * $Id$ |
| 11 | */ |
| 12 | |
| 13 | #ifndef BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP |
| 14 | #define BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP |
| 15 | |
| 16 | #include <cstddef> |
| 17 | #include <limits> |
| 18 | #include <vector> |
| 19 | #include <algorithm> |
| 20 | #include <boost/assert.hpp> |
| 21 | #include <boost/cstdint.hpp> |
| 22 | |
| 23 | namespace boost { |
| 24 | namespace random { |
| 25 | namespace detail { |
| 26 | |
| 27 | class polynomial_ops { |
| 28 | public: |
| 29 | typedef unsigned long digit_t; |
| 30 | |
| 31 | static void add(std::size_t size, const digit_t * lhs, |
| 32 | const digit_t * rhs, digit_t * output) |
| 33 | { |
| 34 | for(std::size_t i = 0; i < size; ++i) { |
| 35 | output[i] = lhs[i] ^ rhs[i]; |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | static void add_shifted_inplace(std::size_t size, const digit_t * lhs, |
| 40 | digit_t * output, std::size_t shift) |
| 41 | { |
| 42 | if(shift == 0) { |
| 43 | add(size, lhs, rhs: output, output); |
| 44 | return; |
| 45 | } |
| 46 | std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 47 | digit_t prev = 0; |
| 48 | for(std::size_t i = 0; i < size; ++i) { |
| 49 | digit_t tmp = lhs[i]; |
| 50 | output[i] ^= (tmp << shift) | (prev >> (bits-shift)); |
| 51 | prev = tmp; |
| 52 | } |
| 53 | output[size] ^= (prev >> (bits-shift)); |
| 54 | } |
| 55 | |
| 56 | static void multiply_simple(std::size_t size, const digit_t * lhs, |
| 57 | const digit_t * rhs, digit_t * output) |
| 58 | { |
| 59 | std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 60 | for(std::size_t i = 0; i < 2*size; ++i) { |
| 61 | output[i] = 0; |
| 62 | } |
| 63 | for(std::size_t i = 0; i < size; ++i) { |
| 64 | for(std::size_t j = 0; j < bits; ++j) { |
| 65 | if((lhs[i] & (digit_t(1) << j)) != 0) { |
| 66 | add_shifted_inplace(size, lhs: rhs, output: output + i, shift: j); |
| 67 | } |
| 68 | } |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | // memory requirements: (size - cutoff) * 4 + next_smaller |
| 73 | static void multiply_karatsuba(std::size_t size, |
| 74 | const digit_t * lhs, const digit_t * rhs, |
| 75 | digit_t * output) |
| 76 | { |
| 77 | if(size < 64) { |
| 78 | multiply_simple(size, lhs, rhs, output); |
| 79 | return; |
| 80 | } |
| 81 | // split in half |
| 82 | std::size_t cutoff = size/2; |
| 83 | multiply_karatsuba(size: cutoff, lhs, rhs, output); |
| 84 | multiply_karatsuba(size: size - cutoff, lhs: lhs + cutoff, rhs: rhs + cutoff, |
| 85 | output: output + cutoff*2); |
| 86 | std::vector<digit_t> local1(size - cutoff); |
| 87 | std::vector<digit_t> local2(size - cutoff); |
| 88 | // combine the digits for the inner multiply |
| 89 | add(size: cutoff, lhs, rhs: lhs + cutoff, output: &local1[0]); |
| 90 | if(size & 1) local1[cutoff] = lhs[size - 1]; |
| 91 | add(size: cutoff, lhs: rhs + cutoff, rhs, output: &local2[0]); |
| 92 | if(size & 1) local2[cutoff] = rhs[size - 1]; |
| 93 | std::vector<digit_t> local3((size - cutoff) * 2); |
| 94 | multiply_karatsuba(size: size - cutoff, lhs: &local1[0], rhs: &local2[0], output: &local3[0]); |
| 95 | add(size: cutoff * 2, lhs: output, rhs: &local3[0], output: &local3[0]); |
| 96 | add(size: (size - cutoff) * 2, lhs: output + cutoff*2, rhs: &local3[0], output: &local3[0]); |
| 97 | // Finally, add the inner result |
| 98 | add(size: (size - cutoff) * 2, lhs: output + cutoff, rhs: &local3[0], output: output + cutoff); |
| 99 | } |
| 100 | |
| 101 | static void multiply_add_karatsuba(std::size_t size, |
| 102 | const digit_t * lhs, const digit_t * rhs, |
| 103 | digit_t * output) |
| 104 | { |
| 105 | std::vector<digit_t> buf(size * 2); |
| 106 | multiply_karatsuba(size, lhs, rhs, output: &buf[0]); |
| 107 | add(size: size * 2, lhs: &buf[0], rhs: output, output); |
| 108 | } |
| 109 | |
| 110 | static void multiply(const digit_t * lhs, std::size_t lhs_size, |
| 111 | const digit_t * rhs, std::size_t rhs_size, |
| 112 | digit_t * output) |
| 113 | { |
| 114 | std::fill_n(first: output, n: lhs_size + rhs_size, value: digit_t(0)); |
| 115 | multiply_add(lhs, lhs_size, rhs, rhs_size, output); |
| 116 | } |
| 117 | |
| 118 | static void multiply_add(const digit_t * lhs, std::size_t lhs_size, |
| 119 | const digit_t * rhs, std::size_t rhs_size, |
| 120 | digit_t * output) |
| 121 | { |
| 122 | // split into pieces that can be passed to |
| 123 | // karatsuba multiply. |
| 124 | while(lhs_size != 0) { |
| 125 | if(lhs_size < rhs_size) { |
| 126 | std::swap(a&: lhs, b&: rhs); |
| 127 | std::swap(a&: lhs_size, b&: rhs_size); |
| 128 | } |
| 129 | |
| 130 | multiply_add_karatsuba(size: rhs_size, lhs, rhs, output); |
| 131 | |
| 132 | lhs += rhs_size; |
| 133 | lhs_size -= rhs_size; |
| 134 | output += rhs_size; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | static void copy_bits(const digit_t * x, std::size_t low, std::size_t high, |
| 139 | digit_t * out) |
| 140 | { |
| 141 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 142 | std::size_t offset = low/bits; |
| 143 | x += offset; |
| 144 | low -= offset*bits; |
| 145 | high -= offset*bits; |
| 146 | std::size_t n = (high-low)/bits; |
| 147 | if(low == 0) { |
| 148 | for(std::size_t i = 0; i < n; ++i) { |
| 149 | out[i] = x[i]; |
| 150 | } |
| 151 | } else { |
| 152 | for(std::size_t i = 0; i < n; ++i) { |
| 153 | out[i] = (x[i] >> low) | (x[i+1] << (bits-low)); |
| 154 | } |
| 155 | } |
| 156 | if((high-low)%bits) { |
| 157 | digit_t low_mask = (digit_t(1) << ((high-low)%bits)) - 1; |
| 158 | digit_t result = (x[n] >> low); |
| 159 | if(low != 0 && (n+1)*bits < high) { |
| 160 | result |= (x[n+1] << (bits-low)); |
| 161 | } |
| 162 | out[n] = (result & low_mask); |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | static void shift_left(digit_t * val, std::size_t size, std::size_t shift) |
| 167 | { |
| 168 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 169 | BOOST_ASSERT(shift > 0); |
| 170 | BOOST_ASSERT(shift < bits); |
| 171 | digit_t prev = 0; |
| 172 | for(std::size_t i = 0; i < size; ++i) { |
| 173 | digit_t tmp = val[i]; |
| 174 | val[i] = (prev >> (bits - shift)) | (val[i] << shift); |
| 175 | prev = tmp; |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | static digit_t sqr(digit_t val) { |
| 180 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 181 | digit_t mask = (digit_t(1) << bits/2) - 1; |
| 182 | for(std::size_t i = bits; i > 1; i /= 2) { |
| 183 | val = ((val & ~mask) << i/2) | (val & mask); |
| 184 | mask = mask & (mask >> i/4); |
| 185 | mask = mask | (mask << i/2); |
| 186 | } |
| 187 | return val; |
| 188 | } |
| 189 | |
| 190 | static void sqr(digit_t * val, std::size_t size) |
| 191 | { |
| 192 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 193 | digit_t mask = (digit_t(1) << bits/2) - 1; |
| 194 | for(std::size_t i = 0; i < size; ++i) { |
| 195 | digit_t x = val[size - i - 1]; |
| 196 | val[(size - i - 1) * 2] = sqr(val: x & mask); |
| 197 | val[(size - i - 1) * 2 + 1] = sqr(val: x >> bits/2); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // optimized for the case when the modulus has few bits set. |
| 202 | struct sparse_mod { |
| 203 | sparse_mod(const digit_t * divisor, std::size_t divisor_bits) |
| 204 | { |
| 205 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 206 | _remainder_bits = divisor_bits - 1; |
| 207 | for(std::size_t i = 0; i < divisor_bits; ++i) { |
| 208 | if(divisor[i/bits] & (digit_t(1) << i%bits)) { |
| 209 | _bit_indices.push_back(x: i); |
| 210 | } |
| 211 | } |
| 212 | BOOST_ASSERT(_bit_indices.back() == divisor_bits - 1); |
| 213 | _bit_indices.pop_back(); |
| 214 | if(_bit_indices.empty()) { |
| 215 | _block_bits = divisor_bits; |
| 216 | _lower_bits = 0; |
| 217 | } else { |
| 218 | _block_bits = divisor_bits - _bit_indices.back() - 1; |
| 219 | _lower_bits = _bit_indices.back() + 1; |
| 220 | } |
| 221 | |
| 222 | _partial_quotient.resize(new_size: (_block_bits + bits - 1)/bits); |
| 223 | } |
| 224 | void operator()(digit_t * dividend, std::size_t dividend_bits) |
| 225 | { |
| 226 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 227 | while(dividend_bits > _remainder_bits) { |
| 228 | std::size_t block_start = (std::max)(a: dividend_bits - _block_bits, b: _remainder_bits); |
| 229 | std::size_t block_size = (dividend_bits - block_start + bits - 1) / bits; |
| 230 | copy_bits(x: dividend, low: block_start, high: dividend_bits, out: &_partial_quotient[0]); |
| 231 | for(std::size_t i = 0; i < _bit_indices.size(); ++i) { |
| 232 | std::size_t pos = _bit_indices[i] + block_start - _remainder_bits; |
| 233 | add_shifted_inplace(size: block_size, lhs: &_partial_quotient[0], output: dividend + pos/bits, shift: pos%bits); |
| 234 | } |
| 235 | add_shifted_inplace(size: block_size, lhs: &_partial_quotient[0], output: dividend + block_start/bits, shift: block_start%bits); |
| 236 | dividend_bits = block_start; |
| 237 | } |
| 238 | } |
| 239 | std::vector<digit_t> _partial_quotient; |
| 240 | std::size_t _remainder_bits; |
| 241 | std::size_t _block_bits; |
| 242 | std::size_t _lower_bits; |
| 243 | std::vector<std::size_t> _bit_indices; |
| 244 | }; |
| 245 | |
| 246 | // base should have the same number of bits as mod |
| 247 | // base, and mod should both be able to hold a power |
| 248 | // of 2 >= mod_bits. out needs to be twice as large. |
| 249 | static void mod_pow_x(boost::uintmax_t exponent, const digit_t * mod, std::size_t mod_bits, digit_t * out) |
| 250 | { |
| 251 | const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 252 | const std::size_t n = (mod_bits + bits - 1) / bits; |
| 253 | const std::size_t highbit = mod_bits - 1; |
| 254 | if(exponent == 0) { |
| 255 | out[0] = 1; |
| 256 | std::fill_n(first: out + 1, n: n - 1, value: digit_t(0)); |
| 257 | return; |
| 258 | } |
| 259 | boost::uintmax_t i = std::numeric_limits<boost::uintmax_t>::digits - 1; |
| 260 | while(((boost::uintmax_t(1) << i) & exponent) == 0) { |
| 261 | --i; |
| 262 | } |
| 263 | out[0] = 2; |
| 264 | std::fill_n(first: out + 1, n: n - 1, value: digit_t(0)); |
| 265 | sparse_mod m(mod, mod_bits); |
| 266 | while(i--) { |
| 267 | sqr(val: out, size: n); |
| 268 | m(out, 2 * mod_bits - 1); |
| 269 | if((boost::uintmax_t(1) << i) & exponent) { |
| 270 | shift_left(val: out, size: n, shift: 1); |
| 271 | if(out[highbit / bits] & (digit_t(1) << highbit%bits)) |
| 272 | add(size: n, lhs: out, rhs: mod, output: out); |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | }; |
| 277 | |
| 278 | class polynomial |
| 279 | { |
| 280 | typedef polynomial_ops::digit_t digit_t; |
| 281 | public: |
| 282 | polynomial() : _size(0) {} |
| 283 | class reference { |
| 284 | public: |
| 285 | reference(digit_t &value, int idx) |
| 286 | : _value(value), _idx(idx) {} |
| 287 | operator bool() const { return (_value & (digit_t(1) << _idx)) != 0; } |
| 288 | reference& operator=(bool b) |
| 289 | { |
| 290 | if(b) { |
| 291 | _value |= (digit_t(1) << _idx); |
| 292 | } else { |
| 293 | _value &= ~(digit_t(1) << _idx); |
| 294 | } |
| 295 | return *this; |
| 296 | } |
| 297 | reference &operator^=(bool b) |
| 298 | { |
| 299 | _value ^= (digit_t(b) << _idx); |
| 300 | return *this; |
| 301 | } |
| 302 | |
| 303 | reference &operator=(const reference &other) |
| 304 | { |
| 305 | return *this = static_cast<bool>(other); |
| 306 | } |
| 307 | private: |
| 308 | digit_t &_value; |
| 309 | int _idx; |
| 310 | }; |
| 311 | reference operator[](std::size_t i) |
| 312 | { |
| 313 | static const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 314 | ensure_bit(i); |
| 315 | return reference(_storage[i/bits], i%bits); |
| 316 | } |
| 317 | bool operator[](std::size_t i) const |
| 318 | { |
| 319 | static const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 320 | if(i < size()) |
| 321 | return (_storage[i/bits] & (digit_t(1) << (i%bits))) != 0; |
| 322 | else |
| 323 | return false; |
| 324 | } |
| 325 | std::size_t size() const |
| 326 | { |
| 327 | return _size; |
| 328 | } |
| 329 | void resize(std::size_t n) |
| 330 | { |
| 331 | static const std::size_t bits = std::numeric_limits<digit_t>::digits; |
| 332 | _storage.resize(new_size: (n + bits - 1)/bits); |
| 333 | // clear the high order bits in case we're shrinking. |
| 334 | if(n%bits) { |
| 335 | _storage.back() &= ((digit_t(1) << (n%bits)) - 1); |
| 336 | } |
| 337 | _size = n; |
| 338 | } |
| 339 | friend polynomial operator*(const polynomial &lhs, const polynomial &rhs); |
| 340 | friend polynomial mod_pow_x(boost::uintmax_t exponent, polynomial mod); |
| 341 | private: |
| 342 | std::vector<polynomial_ops::digit_t> _storage; |
| 343 | std::size_t _size; |
| 344 | void ensure_bit(std::size_t i) |
| 345 | { |
| 346 | if(i >= size()) { |
| 347 | resize(n: i + 1); |
| 348 | } |
| 349 | } |
| 350 | void normalize() |
| 351 | { |
| 352 | while(size() && (*this)[size() - 1] == 0) |
| 353 | resize(n: size() - 1); |
| 354 | } |
| 355 | }; |
| 356 | |
| 357 | inline polynomial operator*(const polynomial &lhs, const polynomial &rhs) |
| 358 | { |
| 359 | polynomial result; |
| 360 | result._storage.resize(new_size: lhs._storage.size() + rhs._storage.size()); |
| 361 | polynomial_ops::multiply(lhs: &lhs._storage[0], lhs_size: lhs._storage.size(), |
| 362 | rhs: &rhs._storage[0], rhs_size: rhs._storage.size(), |
| 363 | output: &result._storage[0]); |
| 364 | result._size = lhs._size + rhs._size; |
| 365 | return result; |
| 366 | } |
| 367 | |
| 368 | inline polynomial mod_pow_x(boost::uintmax_t exponent, polynomial mod) |
| 369 | { |
| 370 | polynomial result; |
| 371 | mod.normalize(); |
| 372 | std::size_t mod_size = mod.size(); |
| 373 | result._storage.resize(new_size: mod._storage.size() * 2); |
| 374 | result._size = mod.size() * 2; |
| 375 | polynomial_ops::mod_pow_x(exponent, mod: &mod._storage[0], mod_bits: mod_size, out: &result._storage[0]); |
| 376 | result.resize(n: mod.size() - 1); |
| 377 | return result; |
| 378 | } |
| 379 | |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | #endif // BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP |
| 385 | |