| 1 | /* Copyright 2003-2022 Joaquin M Lopez Munoz. |
| 2 | * Distributed under the Boost Software License, Version 1.0. |
| 3 | * (See accompanying file LICENSE_1_0.txt or copy at |
| 4 | * http://www.boost.org/LICENSE_1_0.txt) |
| 5 | * |
| 6 | * See http://www.boost.org/libs/multi_index for library home page. |
| 7 | */ |
| 8 | |
| 9 | #ifndef BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP |
| 10 | #define BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP |
| 11 | |
| 12 | #if defined(_MSC_VER) |
| 13 | #pragma once |
| 14 | #endif |
| 15 | |
| 16 | #include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */ |
| 17 | #include <algorithm> |
| 18 | #include <boost/core/noncopyable.hpp> |
| 19 | #include <boost/multi_index/detail/auto_space.hpp> |
| 20 | #include <boost/multi_index/detail/raw_ptr.hpp> |
| 21 | #include <cstddef> |
| 22 | #include <functional> |
| 23 | |
| 24 | namespace boost{ |
| 25 | |
| 26 | namespace multi_index{ |
| 27 | |
| 28 | namespace detail{ |
| 29 | |
| 30 | /* index_matcher compares a sequence of elements against a |
| 31 | * base sequence, identifying those elements that belong to the |
| 32 | * longest subsequence which is ordered with respect to the base. |
| 33 | * For instance, if the base sequence is: |
| 34 | * |
| 35 | * 0 1 2 3 4 5 6 7 8 9 |
| 36 | * |
| 37 | * and the compared sequence (not necesarilly the same length): |
| 38 | * |
| 39 | * 1 4 2 3 0 7 8 9 |
| 40 | * |
| 41 | * the elements of the longest ordered subsequence are: |
| 42 | * |
| 43 | * 1 2 3 7 8 9 |
| 44 | * |
| 45 | * The algorithm for obtaining such a subsequence is called |
| 46 | * Patience Sorting, described in ch. 1 of: |
| 47 | * Aldous, D., Diaconis, P.: "Longest increasing subsequences: from |
| 48 | * patience sorting to the Baik-Deift-Johansson Theorem", Bulletin |
| 49 | * of the American Mathematical Society, vol. 36, no 4, pp. 413-432, |
| 50 | * July 1999. |
| 51 | * http://www.ams.org/bull/1999-36-04/S0273-0979-99-00796-X/ |
| 52 | * S0273-0979-99-00796-X.pdf |
| 53 | * |
| 54 | * This implementation is not fully generic since it assumes that |
| 55 | * the sequences given are pointed to by index iterators (having a |
| 56 | * get_node() memfun.) |
| 57 | */ |
| 58 | |
| 59 | namespace index_matcher{ |
| 60 | |
| 61 | /* The algorithm stores the nodes of the base sequence and a number |
| 62 | * of "piles" that are dynamically updated during the calculation |
| 63 | * stage. From a logical point of view, nodes form an independent |
| 64 | * sequence from piles. They are stored together so as to minimize |
| 65 | * allocated memory. |
| 66 | */ |
| 67 | |
| 68 | struct entry |
| 69 | { |
| 70 | entry(void* node_,std::size_t pos_=0):node(node_),pos(pos_){} |
| 71 | |
| 72 | /* node stuff */ |
| 73 | |
| 74 | void* node; |
| 75 | std::size_t pos; |
| 76 | entry* previous; |
| 77 | bool ordered; |
| 78 | |
| 79 | struct less_by_node |
| 80 | { |
| 81 | bool operator()( |
| 82 | const entry& x,const entry& y)const |
| 83 | { |
| 84 | return std::less<void*>()(x.node,y.node); |
| 85 | } |
| 86 | }; |
| 87 | |
| 88 | /* pile stuff */ |
| 89 | |
| 90 | std::size_t pile_top; |
| 91 | entry* pile_top_entry; |
| 92 | |
| 93 | struct less_by_pile_top |
| 94 | { |
| 95 | bool operator()( |
| 96 | const entry& x,const entry& y)const |
| 97 | { |
| 98 | return x.pile_top<y.pile_top; |
| 99 | } |
| 100 | }; |
| 101 | }; |
| 102 | |
| 103 | /* common code operating on void *'s */ |
| 104 | |
| 105 | template<typename Allocator> |
| 106 | class algorithm_base:private noncopyable |
| 107 | { |
| 108 | protected: |
| 109 | algorithm_base(const Allocator& al,std::size_t size): |
| 110 | spc(al,size),size_(size),n_(0),sorted(false) |
| 111 | { |
| 112 | } |
| 113 | |
| 114 | void add(void* node) |
| 115 | { |
| 116 | entries()[n_]=entry(node,n_); |
| 117 | ++n_; |
| 118 | } |
| 119 | |
| 120 | void begin_algorithm()const |
| 121 | { |
| 122 | if(!sorted){ |
| 123 | std::sort(entries(),entries()+size_,entry::less_by_node()); |
| 124 | sorted=true; |
| 125 | } |
| 126 | num_piles=0; |
| 127 | } |
| 128 | |
| 129 | void add_node_to_algorithm(void* node)const |
| 130 | { |
| 131 | entry* ent= |
| 132 | std::lower_bound( |
| 133 | entries(),entries()+size_, |
| 134 | entry(node),entry::less_by_node()); /* localize entry */ |
| 135 | ent->ordered=false; |
| 136 | std::size_t n=ent->pos; /* get its position */ |
| 137 | |
| 138 | entry dummy(0); |
| 139 | dummy.pile_top=n; |
| 140 | |
| 141 | entry* pile_ent= /* find the first available pile */ |
| 142 | std::lower_bound( /* to stack the entry */ |
| 143 | entries(),entries()+num_piles, |
| 144 | dummy,entry::less_by_pile_top()); |
| 145 | |
| 146 | pile_ent->pile_top=n; /* stack the entry */ |
| 147 | pile_ent->pile_top_entry=ent; |
| 148 | |
| 149 | /* if not the first pile, link entry to top of the preceding pile */ |
| 150 | if(pile_ent>&entries()[0]){ |
| 151 | ent->previous=(pile_ent-1)->pile_top_entry; |
| 152 | } |
| 153 | |
| 154 | if(pile_ent==&entries()[num_piles]){ /* new pile? */ |
| 155 | ++num_piles; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | void finish_algorithm()const |
| 160 | { |
| 161 | if(num_piles>0){ |
| 162 | /* Mark those elements which are in their correct position, i.e. those |
| 163 | * belonging to the longest increasing subsequence. These are those |
| 164 | * elements linked from the top of the last pile. |
| 165 | */ |
| 166 | |
| 167 | entry* ent=entries()[num_piles-1].pile_top_entry; |
| 168 | for(std::size_t n=num_piles;n--;){ |
| 169 | ent->ordered=true; |
| 170 | ent=ent->previous; |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | bool is_ordered(void * node)const |
| 176 | { |
| 177 | return std::lower_bound( |
| 178 | entries(),entries()+size_, |
| 179 | entry(node),entry::less_by_node())->ordered; |
| 180 | } |
| 181 | |
| 182 | private: |
| 183 | entry* entries()const{return raw_ptr<entry*>(spc.data());} |
| 184 | |
| 185 | auto_space<entry,Allocator> spc; |
| 186 | std::size_t size_; |
| 187 | std::size_t n_; |
| 188 | mutable bool sorted; |
| 189 | mutable std::size_t num_piles; |
| 190 | }; |
| 191 | |
| 192 | /* The algorithm has three phases: |
| 193 | * - Initialization, during which the nodes of the base sequence are added. |
| 194 | * - Execution. |
| 195 | * - Results querying, through the is_ordered memfun. |
| 196 | */ |
| 197 | |
| 198 | template<typename Node,typename Allocator> |
| 199 | class algorithm:private algorithm_base<Allocator> |
| 200 | { |
| 201 | typedef algorithm_base<Allocator> super; |
| 202 | |
| 203 | public: |
| 204 | algorithm(const Allocator& al,std::size_t size):super(al,size){} |
| 205 | |
| 206 | void add(Node* node) |
| 207 | { |
| 208 | super::add(node); |
| 209 | } |
| 210 | |
| 211 | template<typename IndexIterator> |
| 212 | void execute(IndexIterator first,IndexIterator last)const |
| 213 | { |
| 214 | super::begin_algorithm(); |
| 215 | |
| 216 | for(IndexIterator it=first;it!=last;++it){ |
| 217 | add_node_to_algorithm(node: get_node(it)); |
| 218 | } |
| 219 | |
| 220 | super::finish_algorithm(); |
| 221 | } |
| 222 | |
| 223 | bool is_ordered(Node* node)const |
| 224 | { |
| 225 | return super::is_ordered(node); |
| 226 | } |
| 227 | |
| 228 | private: |
| 229 | void add_node_to_algorithm(Node* node)const |
| 230 | { |
| 231 | super::add_node_to_algorithm(node); |
| 232 | } |
| 233 | |
| 234 | template<typename IndexIterator> |
| 235 | static Node* get_node(IndexIterator it) |
| 236 | { |
| 237 | return static_cast<Node*>(it.get_node()); |
| 238 | } |
| 239 | }; |
| 240 | |
| 241 | } /* namespace multi_index::detail::index_matcher */ |
| 242 | |
| 243 | } /* namespace multi_index::detail */ |
| 244 | |
| 245 | } /* namespace multi_index */ |
| 246 | |
| 247 | } /* namespace boost */ |
| 248 | |
| 249 | #endif |
| 250 | |