| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file simulated2DConstraints.h |
| 14 | * @brief measurement functions and constraint definitions for simulated 2D robot |
| 15 | * @author Alex Cunningham |
| 16 | */ |
| 17 | |
| 18 | // \callgraph |
| 19 | |
| 20 | #pragma once |
| 21 | |
| 22 | #include <gtsam/base/numericalDerivative.h> |
| 23 | |
| 24 | #include <gtsam/nonlinear/NonlinearEquality.h> |
| 25 | #include <gtsam/slam/BetweenFactor.h> |
| 26 | #include <gtsam/slam/BoundingConstraint.h> |
| 27 | #include <tests/simulated2D.h> |
| 28 | #include "gtsam/nonlinear/NonlinearFactor.h" |
| 29 | |
| 30 | // \namespace |
| 31 | |
| 32 | namespace simulated2D { |
| 33 | |
| 34 | namespace equality_constraints { |
| 35 | |
| 36 | /** Typedefs for regular use */ |
| 37 | typedef NonlinearEquality1<Point2> UnaryEqualityConstraint; |
| 38 | typedef NonlinearEquality1<Point2> UnaryEqualityPointConstraint; |
| 39 | typedef BetweenConstraint<Point2> OdoEqualityConstraint; |
| 40 | |
| 41 | /** Equality between variables */ |
| 42 | typedef NonlinearEquality2<Point2> PoseEqualityConstraint; |
| 43 | typedef NonlinearEquality2<Point2> PointEqualityConstraint; |
| 44 | |
| 45 | } // \namespace equality_constraints |
| 46 | |
| 47 | namespace inequality_constraints { |
| 48 | |
| 49 | /** |
| 50 | * Unary inequality constraint forcing a coordinate to be greater/less than a fixed value (c) |
| 51 | * @tparam VALUE is the value type for the variable constrained, e.g. Pose2, Point3, etc. |
| 52 | * @tparam IDX is an index in tangent space to constrain, must be less than KEY::VALUE::Dim() |
| 53 | */ |
| 54 | template<class VALUE, unsigned int IDX> |
| 55 | struct ScalarCoordConstraint1: public BoundingConstraint1<VALUE> { |
| 56 | typedef BoundingConstraint1<VALUE> Base; ///< Base class convenience typedef |
| 57 | typedef ScalarCoordConstraint1<VALUE, IDX> This; ///< This class convenience typedef |
| 58 | typedef std::shared_ptr<ScalarCoordConstraint1<VALUE, IDX> > shared_ptr; ///< std::shared_ptr convenience typedef |
| 59 | typedef VALUE Point; ///< Constrained variable type |
| 60 | |
| 61 | ~ScalarCoordConstraint1() override {} |
| 62 | |
| 63 | /// @return a deep copy of this factor |
| 64 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 65 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 66 | r: gtsam::NonlinearFactor::shared_ptr(new This(*this))); } |
| 67 | |
| 68 | /** |
| 69 | * Constructor for constraint |
| 70 | * @param key is the label for the constrained variable |
| 71 | * @param c is the measured value for the fixed coordinate |
| 72 | * @param isGreaterThan is a flag to set inequality as greater than or less than |
| 73 | * @param mu is the penalty function gain |
| 74 | */ |
| 75 | ScalarCoordConstraint1(Key key, double c, |
| 76 | bool isGreaterThan, double mu = 1000.0) : |
| 77 | Base(key, c, isGreaterThan, mu) { |
| 78 | } |
| 79 | |
| 80 | /** |
| 81 | * Access function for the constrained index |
| 82 | * @return the index for the constrained coordinate |
| 83 | */ |
| 84 | inline unsigned int index() const { return IDX; } |
| 85 | |
| 86 | /** |
| 87 | * extracts a single value from the point to compute error |
| 88 | * @param x is the estimate of the constrained variable being evaluated |
| 89 | * @param H is an optional Jacobian, linearized at x |
| 90 | */ |
| 91 | double value(const Point& x, OptionalMatrixType H = |
| 92 | OptionalNone) const override { |
| 93 | if (H) { |
| 94 | Matrix D = Matrix::Zero(1, traits<Point>::GetDimension(x)); |
| 95 | D(0, IDX) = 1.0; |
| 96 | *H = D; |
| 97 | } |
| 98 | return traits<Point>::Logmap(x)(IDX); |
| 99 | } |
| 100 | }; |
| 101 | |
| 102 | /** typedefs for use with simulated2D systems */ |
| 103 | typedef ScalarCoordConstraint1<Point2, 0> PoseXInequality; ///< Simulated2D domain example factor constraining X |
| 104 | typedef ScalarCoordConstraint1<Point2, 1> PoseYInequality; ///< Simulated2D domain example factor constraining Y |
| 105 | |
| 106 | /** |
| 107 | * Trait for distance constraints to provide distance |
| 108 | * @tparam T1 is a Lie value for which distance functions exist |
| 109 | * @tparam T2 is a Lie value for which distance functions exist |
| 110 | * @param a is the first Lie element |
| 111 | * @param b is the second Lie element |
| 112 | * @return a scalar distance between values |
| 113 | */ |
| 114 | template<class T1, class T2> |
| 115 | double range_trait(const T1& a, const T2& b) { return distance2(a, b); } |
| 116 | |
| 117 | /** |
| 118 | * Binary inequality constraint forcing the range between points |
| 119 | * to be less than or equal to a bound |
| 120 | * @tparam VALUES is the variable set for the graph |
| 121 | * @tparam KEY is the type of the keys for the variables constrained |
| 122 | */ |
| 123 | template<class VALUE> |
| 124 | struct MaxDistanceConstraint : public BoundingConstraint2<VALUE, VALUE> { |
| 125 | typedef BoundingConstraint2<VALUE, VALUE> Base; ///< Base class for factor |
| 126 | typedef MaxDistanceConstraint<VALUE> This; ///< This class for factor |
| 127 | typedef VALUE Point; ///< Type of variable constrained |
| 128 | |
| 129 | ~MaxDistanceConstraint() override {} |
| 130 | |
| 131 | /// @return a deep copy of this factor |
| 132 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 133 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 134 | r: gtsam::NonlinearFactor::shared_ptr(new This(*this))); } |
| 135 | |
| 136 | /** |
| 137 | * Primary constructor for factor |
| 138 | * @param key1 is the first variable key |
| 139 | * @param key2 is the second variable key |
| 140 | * @param range_bound is the maximum range allowed between the variables |
| 141 | * @param mu is the gain for the penalty function |
| 142 | */ |
| 143 | MaxDistanceConstraint(Key key1, Key key2, double range_bound, double mu = 1000.0) : |
| 144 | Base(key1, key2, range_bound, false, mu) {} |
| 145 | |
| 146 | /** |
| 147 | * computes the range with derivatives |
| 148 | * @param x1 is the first variable value |
| 149 | * @param x2 is the second variable value |
| 150 | * @param H1 is an optional Jacobian in x1 |
| 151 | * @param H2 is an optional Jacobian in x2 |
| 152 | * @return the distance between the variables |
| 153 | */ |
| 154 | double value(const Point& x1, const Point& x2, |
| 155 | OptionalMatrixType H1 = OptionalNone, |
| 156 | OptionalMatrixType H2 = OptionalNone) const override { |
| 157 | if (H1) *H1 = numericalDerivative21(range_trait<Point,Point>, x1, x2, 1e-5); |
| 158 | if (H1) *H2 = numericalDerivative22(range_trait<Point,Point>, x1, x2, 1e-5); |
| 159 | return range_trait(x1, x2); |
| 160 | } |
| 161 | }; |
| 162 | |
| 163 | typedef MaxDistanceConstraint<Point2> PoseMaxDistConstraint; ///< Simulated2D domain example factor |
| 164 | |
| 165 | /** |
| 166 | * Binary inequality constraint forcing a minimum range |
| 167 | * NOTE: this is not a convex function! Be careful with initialization. |
| 168 | * @tparam POSE is the type of the pose value constrained |
| 169 | * @tparam POINT is the type of the point value constrained |
| 170 | */ |
| 171 | template<class POSE, class POINT> |
| 172 | struct MinDistanceConstraint : public BoundingConstraint2<POSE, POINT> { |
| 173 | typedef BoundingConstraint2<POSE, POINT> Base; ///< Base class for factor |
| 174 | typedef MinDistanceConstraint<POSE, POINT> This; ///< This class for factor |
| 175 | typedef POSE Pose; ///< Type of pose variable constrained |
| 176 | typedef POINT Point; ///< Type of point variable constrained |
| 177 | |
| 178 | ~MinDistanceConstraint() override {} |
| 179 | |
| 180 | /// @return a deep copy of this factor |
| 181 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 182 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 183 | r: gtsam::NonlinearFactor::shared_ptr(new This(*this))); } |
| 184 | |
| 185 | /** |
| 186 | * Primary constructor for factor |
| 187 | * @param key1 is the first variable key |
| 188 | * @param key2 is the second variable key |
| 189 | * @param range_bound is the minimum range allowed between the variables |
| 190 | * @param mu is the gain for the penalty function |
| 191 | */ |
| 192 | MinDistanceConstraint(Key key1, Key key2, |
| 193 | double range_bound, double mu = 1000.0) |
| 194 | : Base(key1, key2, range_bound, true, mu) {} |
| 195 | |
| 196 | /** |
| 197 | * computes the range with derivatives |
| 198 | * @param x1 is the first variable value |
| 199 | * @param x2 is the second variable value |
| 200 | * @param H1 is an optional Jacobian in x1 |
| 201 | * @param H2 is an optional Jacobian in x2 |
| 202 | * @return the distance between the variables |
| 203 | */ |
| 204 | double value(const Pose& x1, const Point& x2, |
| 205 | OptionalMatrixType H1 = OptionalNone, |
| 206 | OptionalMatrixType H2 = OptionalNone) const override { |
| 207 | if (H1) *H1 = numericalDerivative21(range_trait<Pose,Point>, x1, x2, 1e-5); |
| 208 | if (H1) *H2 = numericalDerivative22(range_trait<Pose,Point>, x1, x2, 1e-5); |
| 209 | return range_trait(x1, x2); |
| 210 | } |
| 211 | }; |
| 212 | |
| 213 | typedef MinDistanceConstraint<Point2, Point2> LandmarkAvoid; ///< Simulated2D domain example factor |
| 214 | |
| 215 | |
| 216 | } // \namespace inequality_constraints |
| 217 | |
| 218 | } // \namespace simulated2D |
| 219 | |
| 220 | |