| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file testProjectionFactorPPPC.cpp |
| 14 | * @brief Unit tests for Pose+Transform+Calibration ProjectionFactor Class |
| 15 | * @author Chris Beall |
| 16 | * @date Jul 29, 2014 |
| 17 | */ |
| 18 | |
| 19 | #include <gtsam/base/numericalDerivative.h> |
| 20 | #include <gtsam/base/TestableAssertions.h> |
| 21 | #include <gtsam_unstable/slam/ProjectionFactorPPPC.h> |
| 22 | #include <gtsam/inference/Symbol.h> |
| 23 | #include <gtsam/geometry/Cal3DS2.h> |
| 24 | #include <gtsam/geometry/Cal3_S2.h> |
| 25 | #include <gtsam/geometry/Pose3.h> |
| 26 | #include <gtsam/geometry/Point3.h> |
| 27 | #include <gtsam/geometry/Point2.h> |
| 28 | |
| 29 | #include <CppUnitLite/TestHarness.h> |
| 30 | |
| 31 | using namespace std::placeholders; |
| 32 | using namespace std; |
| 33 | using namespace gtsam; |
| 34 | |
| 35 | // make a realistic calibration matrix |
| 36 | static double fov = 60; // degrees |
| 37 | static size_t w=640,h=480; |
| 38 | static Cal3_S2::shared_ptr K1(new Cal3_S2(fov,w,h)); |
| 39 | |
| 40 | // Create a noise model for the pixel error |
| 41 | static SharedNoiseModel model(noiseModel::Unit::Create(dim: 2)); |
| 42 | |
| 43 | // Convenience for named keys |
| 44 | using symbol_shorthand::X; |
| 45 | using symbol_shorthand::L; |
| 46 | using symbol_shorthand::T; |
| 47 | using symbol_shorthand::K; |
| 48 | |
| 49 | typedef ProjectionFactorPPPC<Pose3, Point3, Cal3_S2> TestProjectionFactor; |
| 50 | |
| 51 | /* ************************************************************************* */ |
| 52 | TEST( ProjectionFactorPPPC, nonStandard ) { |
| 53 | ProjectionFactorPPPC<Pose3, Point3, Cal3DS2> f; |
| 54 | } |
| 55 | |
| 56 | /* ************************************************************************* */ |
| 57 | TEST( ProjectionFactorPPPC, Constructor) { |
| 58 | Point2 measurement(323.0, 240.0); |
| 59 | TestProjectionFactor factor(measurement, model, X(j: 1), T(j: 1), L(j: 1), K(j: 1)); |
| 60 | // TODO: Actually check something |
| 61 | } |
| 62 | |
| 63 | /* ************************************************************************* */ |
| 64 | TEST( ProjectionFactorPPPC, Equals ) { |
| 65 | // Create two identical factors and make sure they're equal |
| 66 | Point2 measurement(323.0, 240.0); |
| 67 | |
| 68 | TestProjectionFactor factor1(measurement, model, X(j: 1), T(j: 1), L(j: 1), K(j: 1)); |
| 69 | TestProjectionFactor factor2(measurement, model, X(j: 1), T(j: 1), L(j: 1), K(j: 1)); |
| 70 | |
| 71 | CHECK(assert_equal(factor1, factor2)); |
| 72 | } |
| 73 | |
| 74 | /* ************************************************************************* */ |
| 75 | TEST( ProjectionFactorPPPC, Error ) { |
| 76 | // Create the factor with a measurement that is 3 pixels off in x |
| 77 | Point2 measurement(323.0, 240.0); |
| 78 | TestProjectionFactor factor(measurement, model, X(j: 1), T(j: 1), L(j: 1), K(j: 1)); |
| 79 | |
| 80 | // Set the linearization point |
| 81 | Pose3 pose(Rot3(), Point3(0,0,-6)); |
| 82 | Point3 point(0.0, 0.0, 0.0); |
| 83 | |
| 84 | // Use the factor to calculate the error |
| 85 | Vector actualError(factor.evaluateError(x: pose, x: Pose3(), x: point, x: *K1)); |
| 86 | |
| 87 | // The expected error is (-3.0, 0.0) pixels / UnitCovariance |
| 88 | Vector expectedError = Vector2(-3.0, 0.0); |
| 89 | |
| 90 | // Verify we get the expected error |
| 91 | CHECK(assert_equal(expectedError, actualError, 1e-9)); |
| 92 | } |
| 93 | |
| 94 | /* ************************************************************************* */ |
| 95 | TEST( ProjectionFactorPPPC, ErrorWithTransform ) { |
| 96 | // Create the factor with a measurement that is 3 pixels off in x |
| 97 | Point2 measurement(323.0, 240.0); |
| 98 | Pose3 transform(Rot3::RzRyRx(x: -M_PI_2, y: 0.0, z: -M_PI_2), Point3(0.25, -0.10, 1.0)); |
| 99 | TestProjectionFactor factor(measurement, model, X(j: 1),T(j: 1), L(j: 1), K(j: 1)); |
| 100 | |
| 101 | // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) |
| 102 | Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); |
| 103 | Point3 point(0.0, 0.0, 0.0); |
| 104 | |
| 105 | // Use the factor to calculate the error |
| 106 | Vector actualError(factor.evaluateError(x: pose, x: transform, x: point, x: *K1)); |
| 107 | |
| 108 | // The expected error is (-3.0, 0.0) pixels / UnitCovariance |
| 109 | Vector expectedError = Vector2(-3.0, 0.0); |
| 110 | |
| 111 | // Verify we get the expected error |
| 112 | CHECK(assert_equal(expectedError, actualError, 1e-9)); |
| 113 | } |
| 114 | |
| 115 | /* ************************************************************************* */ |
| 116 | TEST( ProjectionFactorPPPC, Jacobian ) { |
| 117 | // Create the factor with a measurement that is 3 pixels off in x |
| 118 | Point2 measurement(323.0, 240.0); |
| 119 | TestProjectionFactor factor(measurement, model, X(j: 1), T(j: 1), L(j: 1), K(j: 1)); |
| 120 | |
| 121 | // Set the linearization point |
| 122 | Pose3 pose(Rot3(), Point3(0,0,-6)); |
| 123 | Point3 point(0.0, 0.0, 0.0); |
| 124 | |
| 125 | // Use the factor to calculate the Jacobians |
| 126 | Matrix H1Actual, H2Actual, H3Actual, H4Actual; |
| 127 | factor.evaluateError(x: pose, x: Pose3(), x: point, x: *K1, H&: H1Actual, H&: H2Actual, H&: H3Actual, H&: H4Actual); |
| 128 | |
| 129 | // The expected Jacobians |
| 130 | Matrix H1Expected = (Matrix(2, 6) << 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.).finished(); |
| 131 | Matrix H3Expected = (Matrix(2, 3) << 92.376, 0., 0., 0., 92.376, 0.).finished(); |
| 132 | |
| 133 | // Verify the Jacobians are correct |
| 134 | CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); |
| 135 | CHECK(assert_equal(H3Expected, H3Actual, 1e-3)); |
| 136 | |
| 137 | // Verify H2 and H4 with numerical derivatives |
| 138 | Matrix H2Expected = numericalDerivative11<Vector, Pose3>( |
| 139 | h: [&factor, &point, &pose](const Pose3& pose_arg) { return factor.evaluateError(x: pose, x: pose_arg, x: point, x: *K1); }, |
| 140 | x: Pose3()); |
| 141 | |
| 142 | Matrix H4Expected = numericalDerivative11<Vector, Cal3_S2>( |
| 143 | h: [&factor, &point, &pose](const Cal3_S2& K_arg) { return factor.evaluateError(x: pose, x: Pose3(), x: point, x: K_arg); }, |
| 144 | x: *K1); |
| 145 | |
| 146 | CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); |
| 147 | CHECK(assert_equal(H4Expected, H4Actual, 1e-5)); |
| 148 | } |
| 149 | |
| 150 | /* ************************************************************************* */ |
| 151 | TEST( ProjectionFactorPPPC, JacobianWithTransform ) { |
| 152 | // Create the factor with a measurement that is 3 pixels off in x |
| 153 | Point2 measurement(323.0, 240.0); |
| 154 | Pose3 body_P_sensor(Rot3::RzRyRx(x: -M_PI_2, y: 0.0, z: -M_PI_2), Point3(0.25, -0.10, 1.0)); |
| 155 | TestProjectionFactor factor(measurement, model, X(j: 1), T(j: 1), L(j: 1), K(j: 1)); |
| 156 | |
| 157 | // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) |
| 158 | Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); |
| 159 | Point3 point(0.0, 0.0, 0.0); |
| 160 | |
| 161 | // Use the factor to calculate the Jacobians |
| 162 | Matrix H1Actual, H2Actual, H3Actual, H4Actual; |
| 163 | factor.evaluateError(x: pose, x: body_P_sensor, x: point, x: *K1, H&: H1Actual, H&: H2Actual, H&: H3Actual, H&: H4Actual); |
| 164 | |
| 165 | // The expected Jacobians |
| 166 | Matrix H1Expected = (Matrix(2, 6) << -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376).finished(); |
| 167 | Matrix H3Expected = (Matrix(2, 3) << 0., -92.376, 0., 0., 0., -92.376).finished(); |
| 168 | |
| 169 | // Verify the Jacobians are correct |
| 170 | CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); |
| 171 | CHECK(assert_equal(H3Expected, H3Actual, 1e-3)); |
| 172 | |
| 173 | // Verify H2 and H4 with numerical derivatives |
| 174 | Matrix H2Expected = numericalDerivative11<Vector, Pose3>( |
| 175 | h: [&factor, &pose, &point](const Pose3& body_P_sensor) { |
| 176 | return factor.evaluateError(x: pose, x: body_P_sensor, x: point, x: *K1); |
| 177 | }, |
| 178 | x: body_P_sensor); |
| 179 | |
| 180 | Matrix H4Expected = numericalDerivative11<Vector, Cal3_S2>( |
| 181 | h: [&factor, &pose, &body_P_sensor, &point](const Cal3_S2& K) { |
| 182 | return factor.evaluateError(x: pose, x: body_P_sensor, x: point, x: K); |
| 183 | }, |
| 184 | x: *K1); |
| 185 | |
| 186 | CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); |
| 187 | CHECK(assert_equal(H4Expected, H4Actual, 1e-5)); |
| 188 | |
| 189 | } |
| 190 | |
| 191 | /* ************************************************************************* */ |
| 192 | int main() { TestResult tr; return TestRegistry::runAllTests(result&: tr); } |
| 193 | /* ************************************************************************* */ |
| 194 | |
| 195 | |