| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file SmartStereoProjectionFactor.h |
| 14 | * @brief Smart stereo factor on StereoCameras (pose) |
| 15 | * @author Luca Carlone |
| 16 | * @author Zsolt Kira |
| 17 | * @author Frank Dellaert |
| 18 | * @author Chris Beall |
| 19 | */ |
| 20 | |
| 21 | #pragma once |
| 22 | |
| 23 | #include <gtsam/geometry/Pose3.h> |
| 24 | #include <gtsam/geometry/StereoCamera.h> |
| 25 | #include <gtsam/geometry/triangulation.h> |
| 26 | #include <gtsam/inference/Symbol.h> |
| 27 | #include <gtsam/slam/SmartFactorBase.h> |
| 28 | #include <gtsam/slam/SmartFactorParams.h> |
| 29 | #include <gtsam/slam/StereoFactor.h> |
| 30 | #include <gtsam/slam/dataset.h> |
| 31 | #include <gtsam_unstable/dllexport.h> |
| 32 | |
| 33 | #if GTSAM_ENABLE_BOOST_SERIALIZATION |
| 34 | #include <boost/serialization/optional.hpp> |
| 35 | #endif |
| 36 | |
| 37 | #include <optional> |
| 38 | #include <vector> |
| 39 | |
| 40 | namespace gtsam { |
| 41 | |
| 42 | /* |
| 43 | * Parameters for the smart stereo projection factors (identical to the SmartProjectionParams) |
| 44 | */ |
| 45 | typedef SmartProjectionParams SmartStereoProjectionParams; |
| 46 | |
| 47 | /** |
| 48 | * SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around. |
| 49 | * This factor operates with StereoCamera. This factor requires that values |
| 50 | * contains the involved StereoCameras. Calibration is assumed to be fixed, as this |
| 51 | * is also assumed in StereoCamera. |
| 52 | * If you'd like to store poses in values instead of cameras, use |
| 53 | * SmartStereoProjectionPoseFactor instead |
| 54 | */ |
| 55 | class SmartStereoProjectionFactor |
| 56 | : public SmartFactorBase<StereoCamera> { |
| 57 | private: |
| 58 | |
| 59 | typedef SmartFactorBase<StereoCamera> Base; |
| 60 | |
| 61 | protected: |
| 62 | |
| 63 | /// @name Parameters |
| 64 | /// @{ |
| 65 | const SmartStereoProjectionParams params_; |
| 66 | /// @} |
| 67 | |
| 68 | /// @name Caching triangulation |
| 69 | /// @{ |
| 70 | mutable TriangulationResult result_; ///< result from triangulateSafe |
| 71 | mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses |
| 72 | /// @} |
| 73 | |
| 74 | public: |
| 75 | |
| 76 | /// shorthand for a smart pointer to a factor |
| 77 | typedef std::shared_ptr<SmartStereoProjectionFactor> shared_ptr; |
| 78 | |
| 79 | /// Vector of cameras |
| 80 | typedef CameraSet<StereoCamera> Cameras; |
| 81 | |
| 82 | /// Vector of monocular cameras (stereo treated as 2 monocular) |
| 83 | typedef PinholeCamera<Cal3_S2> MonoCamera; |
| 84 | typedef CameraSet<MonoCamera> MonoCameras; |
| 85 | typedef MonoCamera::MeasurementVector MonoMeasurements; |
| 86 | |
| 87 | /** |
| 88 | * Constructor |
| 89 | * @param params internal parameters of the smart factors |
| 90 | */ |
| 91 | SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel, |
| 92 | const SmartStereoProjectionParams& params = SmartStereoProjectionParams(), |
| 93 | const std::optional<Pose3> body_P_sensor = {}) : |
| 94 | Base(sharedNoiseModel, body_P_sensor), // |
| 95 | params_(params), // |
| 96 | result_(TriangulationResult::Degenerate()) { |
| 97 | } |
| 98 | |
| 99 | /** Virtual destructor */ |
| 100 | ~SmartStereoProjectionFactor() override { |
| 101 | } |
| 102 | |
| 103 | /** |
| 104 | * print |
| 105 | * @param s optional string naming the factor |
| 106 | * @param keyFormatter optional formatter useful for printing Symbols |
| 107 | */ |
| 108 | void print(const std::string& s = "" , const KeyFormatter& keyFormatter = |
| 109 | DefaultKeyFormatter) const override { |
| 110 | std::cout << s << "SmartStereoProjectionFactor\n" ; |
| 111 | std::cout << "linearizationMode:\n" << params_.linearizationMode << std::endl; |
| 112 | std::cout << "triangulationParameters:\n" << params_.triangulation << std::endl; |
| 113 | std::cout << "result:\n" << result_ << std::endl; |
| 114 | Base::print(s: "" , keyFormatter); |
| 115 | } |
| 116 | |
| 117 | /// equals |
| 118 | bool equals(const NonlinearFactor& p, double tol = 1e-9) const override { |
| 119 | const SmartStereoProjectionFactor *e = |
| 120 | dynamic_cast<const SmartStereoProjectionFactor*>(&p); |
| 121 | return e && params_.linearizationMode == e->params_.linearizationMode |
| 122 | && Base::equals(p, tol); |
| 123 | } |
| 124 | |
| 125 | /// Check if the new linearization point_ is the same as the one used for previous triangulation |
| 126 | bool decideIfTriangulate(const Cameras& cameras) const { |
| 127 | // several calls to linearize will be done from the same linearization point_, hence it is not needed to re-triangulate |
| 128 | // Note that this is not yet "selecting linearization", that will come later, and we only check if the |
| 129 | // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point_ |
| 130 | |
| 131 | size_t m = cameras.size(); |
| 132 | |
| 133 | bool retriangulate = false; |
| 134 | |
| 135 | // if we do not have a previous linearization point_ or the new linearization point_ includes more poses |
| 136 | if (cameraPosesTriangulation_.empty() |
| 137 | || cameras.size() != cameraPosesTriangulation_.size()) |
| 138 | retriangulate = true; |
| 139 | |
| 140 | if (!retriangulate) { |
| 141 | for (size_t i = 0; i < cameras.size(); i++) { |
| 142 | if (!cameras[i].pose().equals(pose: cameraPosesTriangulation_[i], |
| 143 | tol: params_.retriangulationThreshold)) { |
| 144 | retriangulate = true; // at least two poses are different, hence we retriangulate |
| 145 | break; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | if (retriangulate) { // we store the current poses used for triangulation |
| 151 | cameraPosesTriangulation_.clear(); |
| 152 | cameraPosesTriangulation_.reserve(n: m); |
| 153 | for (size_t i = 0; i < m; i++) |
| 154 | // cameraPosesTriangulation_[i] = cameras[i].pose(); |
| 155 | cameraPosesTriangulation_.push_back(x: cameras[i].pose()); |
| 156 | } |
| 157 | |
| 158 | return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation |
| 159 | } |
| 160 | |
| 161 | // /// triangulateSafe |
| 162 | // size_t triangulateSafe(const Values& values) const { |
| 163 | // return triangulateSafe(this->cameras(values)); |
| 164 | // } |
| 165 | |
| 166 | /// triangulateSafe |
| 167 | TriangulationResult triangulateSafe(const Cameras& cameras) const { |
| 168 | |
| 169 | size_t m = cameras.size(); |
| 170 | bool retriangulate = decideIfTriangulate(cameras); |
| 171 | |
| 172 | // triangulate stereo measurements by treating each stereocamera as a pair of monocular cameras |
| 173 | MonoCameras monoCameras; |
| 174 | MonoMeasurements monoMeasured; |
| 175 | for(size_t i = 0; i < m; i++) { |
| 176 | const Pose3 leftPose = cameras[i].pose(); |
| 177 | const Cal3_S2 monoCal = cameras[i].calibration().calibration(); |
| 178 | const MonoCamera leftCamera_i(leftPose,monoCal); |
| 179 | const Pose3 left_Pose_right = Pose3(Rot3(),Point3(cameras[i].baseline(),0.0,0.0)); |
| 180 | const Pose3 rightPose = leftPose.compose( g: left_Pose_right ); |
| 181 | const MonoCamera rightCamera_i(rightPose,monoCal); |
| 182 | const StereoPoint2 zi = measured_[i]; |
| 183 | monoCameras.push_back(x: leftCamera_i); |
| 184 | monoMeasured.push_back(x: Point2(zi.uL(),zi.v())); |
| 185 | if(!std::isnan(x: zi.uR())){ // if right point is valid |
| 186 | monoCameras.push_back(x: rightCamera_i); |
| 187 | monoMeasured.push_back(x: Point2(zi.uR(),zi.v())); |
| 188 | } |
| 189 | } |
| 190 | if (retriangulate) |
| 191 | result_ = gtsam::triangulateSafe(cameras: monoCameras, measured: monoMeasured, |
| 192 | params: params_.triangulation); |
| 193 | return result_; |
| 194 | } |
| 195 | |
| 196 | /// triangulate |
| 197 | bool triangulateForLinearize(const Cameras& cameras) const { |
| 198 | triangulateSafe(cameras); // imperative, might reset result_ |
| 199 | return bool(result_); |
| 200 | } |
| 201 | |
| 202 | /// linearize returns a Hessianfactor that is an approximation of error(p) |
| 203 | std::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor( |
| 204 | const Cameras& cameras, const double lambda = 0.0, bool diagonalDamping = |
| 205 | false) const { |
| 206 | |
| 207 | size_t numKeys = this->keys_.size(); |
| 208 | // Create structures for Hessian Factors |
| 209 | KeyVector js; |
| 210 | std::vector<Matrix> Gs(numKeys * (numKeys + 1) / 2); |
| 211 | std::vector<Vector> gs(numKeys); |
| 212 | |
| 213 | if (this->measured_.size() != cameras.size()) |
| 214 | throw std::runtime_error("SmartStereoProjectionHessianFactor: this->" |
| 215 | "measured_.size() inconsistent with input" ); |
| 216 | |
| 217 | triangulateSafe(cameras); |
| 218 | |
| 219 | if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) { |
| 220 | // failed: return"empty" Hessian |
| 221 | for(Matrix& m: Gs) |
| 222 | m = Matrix::Zero(rows: Base::Dim, cols: Base::Dim); |
| 223 | for(Vector& v: gs) |
| 224 | v = Vector::Zero(size: Base::Dim); |
| 225 | return std::make_shared<RegularHessianFactor<Base::Dim> >(args: this->keys_, |
| 226 | args&: Gs, args&: gs, args: 0.0); |
| 227 | } |
| 228 | |
| 229 | // Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols(). |
| 230 | Base::FBlocks Fs; |
| 231 | Matrix F, E; |
| 232 | Vector b; |
| 233 | computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras); |
| 234 | |
| 235 | // Whiten using noise model |
| 236 | Base::whitenJacobians(F&: Fs, E, b); |
| 237 | |
| 238 | // build augmented hessian |
| 239 | SymmetricBlockMatrix augmentedHessian = // |
| 240 | Cameras::SchurComplement(Fblocks: Fs, E, b, lambda, diagonalDamping); |
| 241 | |
| 242 | return std::make_shared<RegularHessianFactor<Base::Dim> >(args: this->keys_, |
| 243 | args&: augmentedHessian); |
| 244 | } |
| 245 | |
| 246 | // create factor |
| 247 | // std::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > createRegularImplicitSchurFactor( |
| 248 | // const Cameras& cameras, double lambda) const { |
| 249 | // if (triangulateForLinearize(cameras)) |
| 250 | // return Base::createRegularImplicitSchurFactor(cameras, *result_, lambda); |
| 251 | // else |
| 252 | // // failed: return empty |
| 253 | // return std::shared_ptr<RegularImplicitSchurFactor<StereoCamera> >(); |
| 254 | // } |
| 255 | // |
| 256 | // /// create factor |
| 257 | // std::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > createJacobianQFactor( |
| 258 | // const Cameras& cameras, double lambda) const { |
| 259 | // if (triangulateForLinearize(cameras)) |
| 260 | // return Base::createJacobianQFactor(cameras, *result_, lambda); |
| 261 | // else |
| 262 | // // failed: return empty |
| 263 | // return std::make_shared<JacobianFactorQ<Base::Dim, Base::ZDim> >(this->keys_); |
| 264 | // } |
| 265 | // |
| 266 | // /// Create a factor, takes values |
| 267 | // std::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > createJacobianQFactor( |
| 268 | // const Values& values, double lambda) const { |
| 269 | // return createJacobianQFactor(this->cameras(values), lambda); |
| 270 | // } |
| 271 | |
| 272 | /// different (faster) way to compute Jacobian factor |
| 273 | std::shared_ptr<JacobianFactor> createJacobianSVDFactor( |
| 274 | const Cameras& cameras, double lambda) const { |
| 275 | if (triangulateForLinearize(cameras)) |
| 276 | return Base::createJacobianSVDFactor(cameras, point: *result_, lambda); |
| 277 | else |
| 278 | return std::make_shared<JacobianFactorSVD<Base::Dim, ZDim> >(args: this->keys_); |
| 279 | } |
| 280 | |
| 281 | // /// linearize to a Hessianfactor |
| 282 | // virtual std::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian( |
| 283 | // const Values& values, double lambda = 0.0) const { |
| 284 | // return createHessianFactor(this->cameras(values), lambda); |
| 285 | // } |
| 286 | |
| 287 | // /// linearize to an Implicit Schur factor |
| 288 | // virtual std::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > linearizeToImplicit( |
| 289 | // const Values& values, double lambda = 0.0) const { |
| 290 | // return createRegularImplicitSchurFactor(this->cameras(values), lambda); |
| 291 | // } |
| 292 | // |
| 293 | // /// linearize to a JacobianfactorQ |
| 294 | // virtual std::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > linearizeToJacobian( |
| 295 | // const Values& values, double lambda = 0.0) const { |
| 296 | // return createJacobianQFactor(this->cameras(values), lambda); |
| 297 | // } |
| 298 | |
| 299 | /** |
| 300 | * Linearize to Gaussian Factor |
| 301 | * @param values Values structure which must contain camera poses for this factor |
| 302 | * @return a Gaussian factor |
| 303 | */ |
| 304 | std::shared_ptr<GaussianFactor> linearizeDamped(const Cameras& cameras, |
| 305 | const double lambda = 0.0) const { |
| 306 | // depending on flag set on construction we may linearize to different linear factors |
| 307 | switch (params_.linearizationMode) { |
| 308 | case HESSIAN: |
| 309 | return createHessianFactor(cameras, lambda); |
| 310 | // case IMPLICIT_SCHUR: |
| 311 | // return createRegularImplicitSchurFactor(cameras, lambda); |
| 312 | case JACOBIAN_SVD: |
| 313 | return createJacobianSVDFactor(cameras, lambda); |
| 314 | // case JACOBIAN_Q: |
| 315 | // return createJacobianQFactor(cameras, lambda); |
| 316 | default: |
| 317 | throw std::runtime_error("SmartStereoFactorlinearize: unknown mode" ); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | * Linearize to Gaussian Factor |
| 323 | * @param values Values structure which must contain camera poses for this factor |
| 324 | * @return a Gaussian factor |
| 325 | */ |
| 326 | std::shared_ptr<GaussianFactor> linearizeDamped(const Values& values, |
| 327 | const double lambda = 0.0) const { |
| 328 | // depending on flag set on construction we may linearize to different linear factors |
| 329 | Cameras cameras = this->cameras(values); |
| 330 | return linearizeDamped(cameras, lambda); |
| 331 | } |
| 332 | |
| 333 | /// linearize |
| 334 | std::shared_ptr<GaussianFactor> linearize( |
| 335 | const Values& values) const override { |
| 336 | return linearizeDamped(values); |
| 337 | } |
| 338 | |
| 339 | /** |
| 340 | * Triangulate and compute derivative of error with respect to point |
| 341 | * @return whether triangulation worked |
| 342 | */ |
| 343 | bool triangulateAndComputeE(Matrix& E, const Cameras& cameras) const { |
| 344 | bool nonDegenerate = triangulateForLinearize(cameras); |
| 345 | if (nonDegenerate) |
| 346 | cameras.project2(point: *result_, Fs: nullptr, E: &E); |
| 347 | return nonDegenerate; |
| 348 | } |
| 349 | |
| 350 | /** |
| 351 | * Triangulate and compute derivative of error with respect to point |
| 352 | * @return whether triangulation worked |
| 353 | */ |
| 354 | bool triangulateAndComputeE(Matrix& E, const Values& values) const { |
| 355 | Cameras cameras = this->cameras(values); |
| 356 | return triangulateAndComputeE(E, cameras); |
| 357 | } |
| 358 | |
| 359 | |
| 360 | /// Compute F, E only (called below in both vanilla and SVD versions) |
| 361 | /// Assumes the point has been computed |
| 362 | /// Note E can be 2m*3 or 2m*2, in case point is degenerate |
| 363 | void computeJacobiansWithTriangulatedPoint( |
| 364 | FBlocks& Fs, |
| 365 | Matrix& E, Vector& b, |
| 366 | const Cameras& cameras) const { |
| 367 | |
| 368 | if (!result_) { |
| 369 | throw ("computeJacobiansWithTriangulatedPoint" ); |
| 370 | // // Handle degeneracy |
| 371 | // // TODO check flag whether we should do this |
| 372 | // Unit3 backProjected; /* = cameras[0].backprojectPointAtInfinity( |
| 373 | // this->measured_.at(0)); */ |
| 374 | // |
| 375 | // Base::computeJacobians(Fs, E, b, cameras, backProjected); |
| 376 | } else { |
| 377 | // valid result: just return Base version |
| 378 | Base::computeJacobians(Fs, E, b, cameras, point: *result_); |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | /// Version that takes values, and creates the point |
| 383 | bool triangulateAndComputeJacobians( |
| 384 | FBlocks& Fs, Matrix& E, Vector& b, |
| 385 | const Values& values) const { |
| 386 | Cameras cameras = this->cameras(values); |
| 387 | bool nonDegenerate = triangulateForLinearize(cameras); |
| 388 | if (nonDegenerate) |
| 389 | computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras); |
| 390 | return nonDegenerate; |
| 391 | } |
| 392 | |
| 393 | /// takes values |
| 394 | bool triangulateAndComputeJacobiansSVD( |
| 395 | FBlocks& Fs, Matrix& Enull, Vector& b, |
| 396 | const Values& values) const { |
| 397 | Cameras cameras = this->cameras(values); |
| 398 | bool nonDegenerate = triangulateForLinearize(cameras); |
| 399 | if (nonDegenerate) |
| 400 | Base::computeJacobiansSVD(Fs, Enull, b, cameras, point: *result_); |
| 401 | return nonDegenerate; |
| 402 | } |
| 403 | |
| 404 | /// Calculate vector of re-projection errors, before applying noise model |
| 405 | Vector reprojectionErrorAfterTriangulation(const Values& values) const { |
| 406 | Cameras cameras = this->cameras(values); |
| 407 | bool nonDegenerate = triangulateForLinearize(cameras); |
| 408 | if (nonDegenerate) |
| 409 | return Base::unwhitenedError(cameras, point: *result_); |
| 410 | else |
| 411 | return Vector::Zero(size: cameras.size() * Base::ZDim); |
| 412 | } |
| 413 | |
| 414 | /** |
| 415 | * Calculate the error of the factor. |
| 416 | * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. |
| 417 | * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model |
| 418 | * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. |
| 419 | */ |
| 420 | double totalReprojectionError(const Cameras& cameras, |
| 421 | std::optional<Point3> externalPoint = {}) const { |
| 422 | |
| 423 | if (externalPoint) |
| 424 | result_ = TriangulationResult(*externalPoint); |
| 425 | else |
| 426 | result_ = triangulateSafe(cameras); |
| 427 | |
| 428 | if (result_) |
| 429 | // All good, just use version in base class |
| 430 | return Base::totalReprojectionError(cameras, point: *result_); |
| 431 | else if (params_.degeneracyMode == HANDLE_INFINITY) { |
| 432 | throw(std::runtime_error("Backproject at infinity not implemented for SmartStereo." )); |
| 433 | // // Otherwise, manage the exceptions with rotation-only factors |
| 434 | // const StereoPoint2& z0 = this->measured_.at(0); |
| 435 | // Unit3 backprojected; //= cameras.front().backprojectPointAtInfinity(z0); |
| 436 | // |
| 437 | // return Base::totalReprojectionError(cameras, backprojected); |
| 438 | } else { |
| 439 | // if we don't want to manage the exceptions we discard the factor |
| 440 | return 0.0; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /// Calculate total reprojection error |
| 445 | double error(const Values& values) const override { |
| 446 | if (this->active(c: values)) { |
| 447 | return totalReprojectionError(cameras: Base::cameras(values)); |
| 448 | } else { // else of active flag |
| 449 | return 0.0; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | /** |
| 454 | * This corrects the Jacobians and error vector for the case in which the |
| 455 | * right 2D measurement in the monocular camera is missing (nan). |
| 456 | */ |
| 457 | void correctForMissingMeasurements( |
| 458 | const Cameras& cameras, Vector& ue, |
| 459 | typename Cameras::FBlocks* Fs = nullptr, |
| 460 | Matrix* E = nullptr) const override { |
| 461 | // when using stereo cameras, some of the measurements might be missing: |
| 462 | for (size_t i = 0; i < cameras.size(); i++) { |
| 463 | const StereoPoint2& z = measured_.at(n: i); |
| 464 | if (std::isnan(x: z.uR())) // if the right 2D measurement is invalid |
| 465 | { |
| 466 | if (Fs) { // delete influence of right point on jacobian Fs |
| 467 | MatrixZD& Fi = Fs->at(n: i); |
| 468 | for (size_t ii = 0; ii < Dim; ii++) Fi(1, ii) = 0.0; |
| 469 | } |
| 470 | if (E) // delete influence of right point on jacobian E |
| 471 | E->row(i: ZDim * i + 1) = Matrix::Zero(rows: 1, cols: E->cols()); |
| 472 | |
| 473 | // set the corresponding entry of vector ue to zero |
| 474 | ue(ZDim * i + 1) = 0.0; |
| 475 | } |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | /** return the landmark */ |
| 480 | TriangulationResult point() const { |
| 481 | return result_; |
| 482 | } |
| 483 | |
| 484 | /** COMPUTE the landmark */ |
| 485 | TriangulationResult point(const Values& values) const { |
| 486 | Cameras cameras = this->cameras(values); |
| 487 | return triangulateSafe(cameras); |
| 488 | } |
| 489 | |
| 490 | /// Is result valid? |
| 491 | bool isValid() const { return result_.valid(); } |
| 492 | |
| 493 | /** return the degenerate state */ |
| 494 | bool isDegenerate() const { return result_.degenerate(); } |
| 495 | |
| 496 | /** return the cheirality status flag */ |
| 497 | bool isPointBehindCamera() const { return result_.behindCamera(); } |
| 498 | |
| 499 | /** return the outlier state */ |
| 500 | bool isOutlier() const { return result_.outlier(); } |
| 501 | |
| 502 | /** return the farPoint state */ |
| 503 | bool isFarPoint() const { return result_.farPoint(); } |
| 504 | |
| 505 | private: |
| 506 | |
| 507 | #if GTSAM_ENABLE_BOOST_SERIALIZATION |
| 508 | /// Serialization function |
| 509 | friend class boost::serialization::access; |
| 510 | template<class ARCHIVE> |
| 511 | void serialize(ARCHIVE & ar, const unsigned int /*version*/) { |
| 512 | ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); |
| 513 | ar & BOOST_SERIALIZATION_NVP(params_.throwCheirality); |
| 514 | ar & BOOST_SERIALIZATION_NVP(params_.verboseCheirality); |
| 515 | } |
| 516 | #endif |
| 517 | }; |
| 518 | |
| 519 | /// traits |
| 520 | template<> |
| 521 | struct traits<SmartStereoProjectionFactor > : public Testable< |
| 522 | SmartStereoProjectionFactor> { |
| 523 | }; |
| 524 | |
| 525 | } // \ namespace gtsam |
| 526 | |