| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file ProjectionFactor.h |
| 14 | * @brief Basic bearing factor from 2D measurement |
| 15 | * @author Chris Beall |
| 16 | * @author Richard Roberts |
| 17 | * @author Frank Dellaert |
| 18 | * @author Alex Cunningham |
| 19 | */ |
| 20 | |
| 21 | #pragma once |
| 22 | |
| 23 | #include <gtsam/nonlinear/NonlinearFactor.h> |
| 24 | #include <gtsam/geometry/PinholeCamera.h> |
| 25 | #include "gtsam/geometry/Cal3_S2.h" |
| 26 | |
| 27 | namespace gtsam { |
| 28 | |
| 29 | /** |
| 30 | * Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here. |
| 31 | * i.e. the main building block for visual SLAM. |
| 32 | * @ingroup slam |
| 33 | */ |
| 34 | template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2> |
| 35 | class MultiProjectionFactor: public NoiseModelFactor { |
| 36 | protected: |
| 37 | |
| 38 | // Keep a copy of measurement and calibration for I/O |
| 39 | Vector measured_; ///< 2D measurement for each of the n views |
| 40 | std::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object |
| 41 | std::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame |
| 42 | |
| 43 | |
| 44 | // verbosity handling for Cheirality Exceptions |
| 45 | bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) |
| 46 | bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) |
| 47 | |
| 48 | public: |
| 49 | |
| 50 | /// shorthand for base class type |
| 51 | typedef NoiseModelFactor Base; |
| 52 | |
| 53 | /// shorthand for this class |
| 54 | typedef MultiProjectionFactor<POSE, LANDMARK, CALIBRATION> This; |
| 55 | |
| 56 | /// shorthand for a smart pointer to a factor |
| 57 | typedef std::shared_ptr<This> shared_ptr; |
| 58 | |
| 59 | /// Default constructor |
| 60 | MultiProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} |
| 61 | |
| 62 | /** |
| 63 | * Constructor |
| 64 | * TODO: Mark argument order standard (keys, measurement, parameters) |
| 65 | * @param measured is the 2n dimensional location of the n points in the n views (the measurements) |
| 66 | * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) |
| 67 | * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark |
| 68 | * @param pointKey is the index of the landmark |
| 69 | * @param K shared pointer to the constant calibration |
| 70 | * @param body_P_sensor is the transform from body to sensor frame (default identity) |
| 71 | */ |
| 72 | MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model, |
| 73 | KeySet poseKeys, Key pointKey, const std::shared_ptr<CALIBRATION>& K, |
| 74 | std::optional<POSE> body_P_sensor = {}) : |
| 75 | Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor), |
| 76 | throwCheirality_(false), verboseCheirality_(false) { |
| 77 | keys_.assign(poseKeys.begin(), poseKeys.end()); |
| 78 | keys_.push_back(pointKey); |
| 79 | } |
| 80 | |
| 81 | /** |
| 82 | * Constructor with exception-handling flags |
| 83 | * TODO: Mark argument order standard (keys, measurement, parameters) |
| 84 | * @param measured is the 2 dimensional location of point in image (the measurement) |
| 85 | * @param model is the standard deviation |
| 86 | * @param poseKey is the index of the camera |
| 87 | * @param pointKey is the index of the landmark |
| 88 | * @param K shared pointer to the constant calibration |
| 89 | * @param throwCheirality determines whether Cheirality exceptions are rethrown |
| 90 | * @param verboseCheirality determines whether exceptions are printed for Cheirality |
| 91 | * @param body_P_sensor is the transform from body to sensor frame (default identity) |
| 92 | */ |
| 93 | MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model, |
| 94 | KeySet poseKeys, Key pointKey, const std::shared_ptr<CALIBRATION>& K, |
| 95 | bool throwCheirality, bool verboseCheirality, |
| 96 | std::optional<POSE> body_P_sensor = {}) : |
| 97 | Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor), |
| 98 | throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} |
| 99 | |
| 100 | /** Virtual destructor */ |
| 101 | ~MultiProjectionFactor() override {} |
| 102 | |
| 103 | /// @return a deep copy of this factor |
| 104 | NonlinearFactor::shared_ptr clone() const override { |
| 105 | return std::static_pointer_cast<NonlinearFactor>( |
| 106 | r: NonlinearFactor::shared_ptr(new This(*this))); } |
| 107 | |
| 108 | /** |
| 109 | * print |
| 110 | * @param s optional string naming the factor |
| 111 | * @param keyFormatter optional formatter useful for printing Symbols |
| 112 | */ |
| 113 | void print(const std::string& s = "" , const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override { |
| 114 | std::cout << s << "MultiProjectionFactor, z = " ; |
| 115 | std::cout << measured_ << "measurements, z = " ; |
| 116 | if(this->body_P_sensor_) |
| 117 | this->body_P_sensor_->print(" sensor pose in body frame: " ); |
| 118 | Base::print(s: "" , keyFormatter); |
| 119 | } |
| 120 | |
| 121 | /// equals |
| 122 | bool equals(const NonlinearFactor& p, double tol = 1e-9) const override { |
| 123 | const This *e = dynamic_cast<const This*>(&p); |
| 124 | return e |
| 125 | && Base::equals(f: p, tol) |
| 126 | //&& this->measured_.equals(e->measured_, tol) |
| 127 | && this->K_->equals(*e->K_, tol) |
| 128 | && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); |
| 129 | } |
| 130 | |
| 131 | /// Evaluate error h(x)-z and optionally derivatives |
| 132 | Vector unwhitenedError(const Values& x, OptionalMatrixVecType H = nullptr) const override { |
| 133 | |
| 134 | Vector a; |
| 135 | return a; |
| 136 | |
| 137 | // Point3 point = x.at<Point3>(*keys_.end()); |
| 138 | // |
| 139 | // std::vector<KeyType>::iterator vit; |
| 140 | // for (vit = keys_.begin(); vit != keys_.end()-1; vit++) { |
| 141 | // Key key = (*vit); |
| 142 | // Pose3 pose = x.at<Pose3>(key); |
| 143 | // |
| 144 | // if(body_P_sensor_) { |
| 145 | // if(H1) { |
| 146 | // Matrix H0; |
| 147 | // PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_); |
| 148 | // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); |
| 149 | // *H1 = *H1 * H0; |
| 150 | // return reprojectionError; |
| 151 | // } else { |
| 152 | // PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_); |
| 153 | // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); |
| 154 | // return reprojectionError; |
| 155 | // } |
| 156 | // } else { |
| 157 | // PinholeCamera<CALIBRATION> camera(pose, *K_); |
| 158 | // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); |
| 159 | // return reprojectionError; |
| 160 | // } |
| 161 | // } |
| 162 | |
| 163 | } |
| 164 | |
| 165 | |
| 166 | Vector evaluateError(const Pose3& pose, const Point3& point, |
| 167 | OptionalJacobian<2, 6> H1 = {}, OptionalJacobian<2,3> H2 = {}) const { |
| 168 | try { |
| 169 | if(body_P_sensor_) { |
| 170 | if(H1) { |
| 171 | Matrix H0; |
| 172 | PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_, H0), *K_); |
| 173 | Point2 reprojectionError(camera.project(point, H1, H2) - measured_); |
| 174 | *H1 = *H1 * H0; |
| 175 | return reprojectionError; |
| 176 | } else { |
| 177 | PinholeCamera<CALIBRATION> camera(pose.compose(*body_P_sensor_), *K_); |
| 178 | Point2 reprojectionError(camera.project(point, H1, H2) - measured_); |
| 179 | return reprojectionError; |
| 180 | } |
| 181 | } else { |
| 182 | PinholeCamera<CALIBRATION> camera(pose, *K_); |
| 183 | Point2 reprojectionError(camera.project(point, H1, H2) - measured_); |
| 184 | return reprojectionError; |
| 185 | } |
| 186 | } catch( CheiralityException& e) { |
| 187 | if (H1) *H1 = Matrix::Zero(rows: 2,cols: 6); |
| 188 | if (H2) *H2 = Matrix::Zero(rows: 2,cols: 3); |
| 189 | if (verboseCheirality_) |
| 190 | std::cout << e.what() << ": Landmark " << DefaultKeyFormatter(this->keys_.at(1)) << |
| 191 | " moved behind camera " << DefaultKeyFormatter(this->keys_.at(0)) << std::endl; |
| 192 | if (throwCheirality_) |
| 193 | throw e; |
| 194 | } |
| 195 | return Vector::Ones(size: 2) * 2.0 * K_->fx(); |
| 196 | } |
| 197 | |
| 198 | /** return the measurements */ |
| 199 | const Vector& measured() const { |
| 200 | return measured_; |
| 201 | } |
| 202 | |
| 203 | /** return the calibration object */ |
| 204 | inline const std::shared_ptr<CALIBRATION> calibration() const { |
| 205 | return K_; |
| 206 | } |
| 207 | |
| 208 | /** return verbosity */ |
| 209 | inline bool verboseCheirality() const { return verboseCheirality_; } |
| 210 | |
| 211 | /** return flag for throwing cheirality exceptions */ |
| 212 | inline bool throwCheirality() const { return throwCheirality_; } |
| 213 | |
| 214 | private: |
| 215 | |
| 216 | #if GTSAM_ENABLE_BOOST_SERIALIZATION /// |
| 217 | /// Serialization function |
| 218 | friend class boost::serialization::access; |
| 219 | template<class ARCHIVE> |
| 220 | void serialize(ARCHIVE & ar, const unsigned int /*version*/) { |
| 221 | ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); |
| 222 | ar & BOOST_SERIALIZATION_NVP(measured_); |
| 223 | ar & BOOST_SERIALIZATION_NVP(K_); |
| 224 | ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); |
| 225 | ar & BOOST_SERIALIZATION_NVP(throwCheirality_); |
| 226 | ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); |
| 227 | } |
| 228 | #endif |
| 229 | }; |
| 230 | } // \ namespace gtsam |
| 231 | |