| 1 | /* |
| 2 | * GenericGraph2D.cpp |
| 3 | * |
| 4 | * Created on: Nov 23, 2010 |
| 5 | * Author: nikai |
| 6 | * Description: generic graph types used in partitioning |
| 7 | */ |
| 8 | #include <iostream> |
| 9 | #include <cassert> |
| 10 | #include <algorithm> |
| 11 | |
| 12 | #include <gtsam/base/DSFVector.h> |
| 13 | |
| 14 | #include "GenericGraph.h" |
| 15 | |
| 16 | using namespace std; |
| 17 | |
| 18 | namespace gtsam { namespace partition { |
| 19 | |
| 20 | /** |
| 21 | * Note: Need to be able to handle a graph with factors that involve variables not in the given {keys} |
| 22 | */ |
| 23 | list<vector<size_t> > findIslands(const GenericGraph2D& graph, const vector<size_t>& keys, WorkSpace& workspace, |
| 24 | const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) |
| 25 | { |
| 26 | typedef pair<int, int> IntPair; |
| 27 | typedef list<sharedGenericFactor2D> FactorList; |
| 28 | typedef map<IntPair, FactorList::iterator> Connections; |
| 29 | |
| 30 | // create disjoin set forest |
| 31 | DSFVector dsf(workspace.dsf, keys); |
| 32 | |
| 33 | FactorList factors(graph.begin(), graph.end()); |
| 34 | size_t nrFactors = factors.size(); |
| 35 | FactorList::iterator itEnd; |
| 36 | workspace.prepareDictionary(keys); |
| 37 | while (nrFactors) { |
| 38 | Connections connections; |
| 39 | bool succeed = false; |
| 40 | itEnd = factors.end(); |
| 41 | list<FactorList::iterator> toErase; |
| 42 | for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) { |
| 43 | |
| 44 | // remove invalid factors |
| 45 | GenericNode2D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2; |
| 46 | if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) { |
| 47 | toErase.push_back(x: itFactor); nrFactors--; continue; |
| 48 | } |
| 49 | |
| 50 | size_t label1 = dsf.find(key: key1.index); |
| 51 | size_t label2 = dsf.find(key: key2.index); |
| 52 | if (label1 == label2) { toErase.push_back(x: itFactor); nrFactors--; continue; } |
| 53 | |
| 54 | // merge two trees if the connection is strong enough, otherwise cache it |
| 55 | // an odometry factor always merges two islands |
| 56 | if (key1.type == NODE_POSE_2D && key2.type == NODE_POSE_2D) { |
| 57 | toErase.push_back(x: itFactor); nrFactors--; |
| 58 | dsf.merge(i1: label1, i2: label2); |
| 59 | succeed = true; |
| 60 | break; |
| 61 | } |
| 62 | |
| 63 | // single landmark island only need one measurement |
| 64 | if ((dsf.isSingleton(label: label1)==1 && key1.type == NODE_LANDMARK_2D) || |
| 65 | (dsf.isSingleton(label: label2)==1 && key2.type == NODE_LANDMARK_2D)) { |
| 66 | toErase.push_back(x: itFactor); nrFactors--; |
| 67 | dsf.merge(i1: label1, i2: label2); |
| 68 | succeed = true; |
| 69 | break; |
| 70 | } |
| 71 | |
| 72 | // stack the current factor with the cached constraint |
| 73 | IntPair labels = (label1 < label2) ? make_pair(x&: label1, y&: label2) : make_pair(x&: label2, y&: label1); |
| 74 | Connections::iterator itCached = connections.find(x: labels); |
| 75 | if (itCached == connections.end()) { |
| 76 | connections.insert(x: make_pair(x&: labels, y&: itFactor)); |
| 77 | continue; |
| 78 | } else { |
| 79 | GenericNode2D key21 = (*itCached->second)->key1, key22 = (*itCached->second)->key2; |
| 80 | // if observe the same landmark, we can not merge, abandon the current factor |
| 81 | if ((key1.index == key21.index && key1.type == NODE_LANDMARK_2D) || |
| 82 | (key1.index == key22.index && key1.type == NODE_LANDMARK_2D) || |
| 83 | (key2.index == key21.index && key2.type == NODE_LANDMARK_2D) || |
| 84 | (key2.index == key22.index && key2.type == NODE_LANDMARK_2D)) { |
| 85 | toErase.push_back(x: itFactor); nrFactors--; |
| 86 | continue; |
| 87 | } else { |
| 88 | toErase.push_back(x: itFactor); nrFactors--; |
| 89 | toErase.push_back(x: itCached->second); nrFactors--; |
| 90 | dsf.merge(i1: label1, i2: label2); |
| 91 | connections.erase(position: itCached); |
| 92 | succeed = true; |
| 93 | break; |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | // erase unused factors |
| 99 | for(const FactorList::iterator& it: toErase) |
| 100 | factors.erase(position: it); |
| 101 | |
| 102 | if (!succeed) break; |
| 103 | } |
| 104 | |
| 105 | list<vector<size_t> > islands; |
| 106 | map<size_t, vector<size_t> > arrays = dsf.arrays(); |
| 107 | for(const auto& kv : arrays) |
| 108 | islands.push_back(x: kv.second); |
| 109 | return islands; |
| 110 | } |
| 111 | |
| 112 | |
| 113 | /* ************************************************************************* */ |
| 114 | void print(const GenericGraph2D& graph, const std::string name) { |
| 115 | cout << name << endl; |
| 116 | for(const sharedGenericFactor2D& factor_: graph) |
| 117 | cout << factor_->key1.index << " " << factor_->key2.index << endl; |
| 118 | } |
| 119 | |
| 120 | /* ************************************************************************* */ |
| 121 | void print(const GenericGraph3D& graph, const std::string name) { |
| 122 | cout << name << endl; |
| 123 | for(const sharedGenericFactor3D& factor_: graph) |
| 124 | cout << factor_->key1.index << " " << factor_->key2.index << " (" << |
| 125 | factor_->key1.type << ", " << factor_->key2.type <<")" << endl; |
| 126 | } |
| 127 | |
| 128 | /* ************************************************************************* */ |
| 129 | // create disjoin set forest |
| 130 | DSFVector createDSF(const GenericGraph3D& graph, const vector<size_t>& keys, const WorkSpace& workspace) { |
| 131 | DSFVector dsf(workspace.dsf, keys); |
| 132 | typedef list<sharedGenericFactor3D> FactorList; |
| 133 | |
| 134 | FactorList factors(graph.begin(), graph.end()); |
| 135 | size_t nrFactors = factors.size(); |
| 136 | FactorList::iterator itEnd; |
| 137 | while (nrFactors) { |
| 138 | |
| 139 | bool succeed = false; |
| 140 | itEnd = factors.end(); |
| 141 | list<FactorList::iterator> toErase; |
| 142 | for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) { |
| 143 | |
| 144 | // remove invalid factors |
| 145 | if (graph.size() == 178765) cout << "kai21" << endl; |
| 146 | GenericNode3D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2; |
| 147 | if (graph.size() == 178765) cout << "kai21: " << key1.index << " " << key2.index << endl; |
| 148 | if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) { |
| 149 | toErase.push_back(x: itFactor); nrFactors--; continue; |
| 150 | } |
| 151 | |
| 152 | if (graph.size() == 178765) cout << "kai22" << endl; |
| 153 | size_t label1 = dsf.find(key: key1.index); |
| 154 | size_t label2 = dsf.find(key: key2.index); |
| 155 | if (label1 == label2) { toErase.push_back(x: itFactor); nrFactors--; continue; } |
| 156 | |
| 157 | if (graph.size() == 178765) cout << "kai23" << endl; |
| 158 | // merge two trees if the connection is strong enough, otherwise cache it |
| 159 | // an odometry factor always merges two islands |
| 160 | if ((key1.type == NODE_POSE_3D && key2.type == NODE_LANDMARK_3D) || |
| 161 | (key1.type == NODE_POSE_3D && key2.type == NODE_POSE_3D)) { |
| 162 | toErase.push_back(x: itFactor); nrFactors--; |
| 163 | dsf.merge(i1: label1, i2: label2); |
| 164 | succeed = true; |
| 165 | break; |
| 166 | } |
| 167 | |
| 168 | if (graph.size() == 178765) cout << "kai24" << endl; |
| 169 | |
| 170 | |
| 171 | } |
| 172 | |
| 173 | // erase unused factors |
| 174 | for(const FactorList::iterator& it: toErase) |
| 175 | factors.erase(position: it); |
| 176 | |
| 177 | if (!succeed) break; |
| 178 | } |
| 179 | return dsf; |
| 180 | } |
| 181 | |
| 182 | /* ************************************************************************* */ |
| 183 | // first check the type of the key (pose or landmark), and then check whether it is singular |
| 184 | inline bool isSingular(const set<size_t>& singularCameras, const set<size_t>& singularLandmarks, const GenericNode3D& node) { |
| 185 | switch(node.type) { |
| 186 | case NODE_POSE_3D: |
| 187 | return singularCameras.find(x: node.index) != singularCameras.end(); break; |
| 188 | case NODE_LANDMARK_3D: |
| 189 | return singularLandmarks.find(x: node.index) != singularLandmarks.end(); break; |
| 190 | default: |
| 191 | throw runtime_error("unrecognized key type!" ); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /* ************************************************************************* */ |
| 196 | void findSingularCamerasLandmarks(const GenericGraph3D& graph, const WorkSpace& workspace, |
| 197 | const vector<bool>& isCamera, const vector<bool>& isLandmark, |
| 198 | set<size_t>& singularCameras, set<size_t>& singularLandmarks, vector<int>& nrConstraints, |
| 199 | bool& foundSingularCamera, bool& foundSingularLandmark, |
| 200 | const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { |
| 201 | |
| 202 | // compute the constraint number per camera |
| 203 | std::fill(first: nrConstraints.begin(), last: nrConstraints.end(), value: 0); |
| 204 | for(const sharedGenericFactor3D& factor_: graph) { |
| 205 | const int& key1 = factor_->key1.index; |
| 206 | const int& key2 = factor_->key2.index; |
| 207 | if (workspace.dictionary[key1] != -1 && workspace.dictionary[key2] != -1 && |
| 208 | !isSingular(singularCameras, singularLandmarks, node: factor_->key1) && |
| 209 | !isSingular(singularCameras, singularLandmarks, node: factor_->key2)) { |
| 210 | nrConstraints[key1]++; |
| 211 | nrConstraints[key2]++; |
| 212 | |
| 213 | // a single pose constraint is sufficient for stereo, so we add 2 to the counter |
| 214 | // for a total of 3, i.e. the same as 3 landmarks fully constraining the camera |
| 215 | if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){ |
| 216 | nrConstraints[key1]+=2; |
| 217 | nrConstraints[key2]+=2; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | // find singular cameras and landmarks |
| 223 | foundSingularCamera = false; |
| 224 | foundSingularLandmark = false; |
| 225 | for (size_t i=0; i<nrConstraints.size(); i++) { |
| 226 | if (isCamera[i] && nrConstraints[i] < minNrConstraintsPerCamera && |
| 227 | singularCameras.find(x: i) == singularCameras.end()) { |
| 228 | singularCameras.insert(x: i); |
| 229 | foundSingularCamera = true; |
| 230 | } |
| 231 | if (isLandmark[i] && nrConstraints[i] < minNrConstraintsPerLandmark && |
| 232 | singularLandmarks.find(x: i) == singularLandmarks.end()) { |
| 233 | singularLandmarks.insert(x: i); |
| 234 | foundSingularLandmark = true; |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /* ************************************************************************* */ |
| 240 | list<vector<size_t> > findIslands(const GenericGraph3D& graph, const vector<size_t>& keys, WorkSpace& workspace, |
| 241 | const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) { |
| 242 | |
| 243 | // create disjoint set forest |
| 244 | workspace.prepareDictionary(keys); |
| 245 | DSFVector dsf = createDSF(graph, keys, workspace); |
| 246 | |
| 247 | const bool verbose = false; |
| 248 | bool foundSingularCamera = true; |
| 249 | bool foundSingularLandmark = true; |
| 250 | |
| 251 | list<vector<size_t> > islands; |
| 252 | set<size_t> singularCameras, singularLandmarks; |
| 253 | vector<bool> isCamera(workspace.dictionary.size(), false); |
| 254 | vector<bool> isLandmark(workspace.dictionary.size(), false); |
| 255 | |
| 256 | // check the constraint number of every variable |
| 257 | // find the camera and landmark keys |
| 258 | for(const sharedGenericFactor3D& factor_: graph) { |
| 259 | //assert(factor_->key2.type == NODE_LANDMARK_3D); // only VisualSLAM should come here, not StereoSLAM |
| 260 | if (workspace.dictionary[factor_->key1.index] != -1) { |
| 261 | if (factor_->key1.type == NODE_POSE_3D) |
| 262 | isCamera[factor_->key1.index] = true; |
| 263 | else |
| 264 | isLandmark[factor_->key1.index] = true; |
| 265 | } |
| 266 | if (workspace.dictionary[factor_->key2.index] != -1) { |
| 267 | if (factor_->key2.type == NODE_POSE_3D) |
| 268 | isCamera[factor_->key2.index] = true; |
| 269 | else |
| 270 | isLandmark[factor_->key2.index] = true; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | vector<int> nrConstraints(workspace.dictionary.size(), 0); |
| 275 | // iterate until all singular variables have been removed. Removing a singular variable |
| 276 | // can cause another to become singular, so this will probably run several times |
| 277 | while (foundSingularCamera || foundSingularLandmark) { |
| 278 | findSingularCamerasLandmarks(graph, workspace, isCamera, isLandmark, // input |
| 279 | singularCameras, singularLandmarks, nrConstraints, // output |
| 280 | foundSingularCamera, foundSingularLandmark, // output |
| 281 | minNrConstraintsPerCamera, minNrConstraintsPerLandmark); // input |
| 282 | } |
| 283 | |
| 284 | // add singular variables directly as islands |
| 285 | if (!singularCameras.empty()) { |
| 286 | if (verbose) cout << "singular cameras:" ; |
| 287 | for(const size_t i: singularCameras) { |
| 288 | islands.push_back(x: vector<size_t>(1, i)); // <--------------------------- |
| 289 | if (verbose) cout << i << " " ; |
| 290 | } |
| 291 | if (verbose) cout << endl; |
| 292 | } |
| 293 | if (!singularLandmarks.empty()) { |
| 294 | if (verbose) cout << "singular landmarks:" ; |
| 295 | for(const size_t i: singularLandmarks) { |
| 296 | islands.push_back(x: vector<size_t>(1, i)); // <--------------------------- |
| 297 | if (verbose) cout << i << " " ; |
| 298 | } |
| 299 | if (verbose) cout << endl; |
| 300 | } |
| 301 | |
| 302 | |
| 303 | // regenerating islands |
| 304 | map<size_t, vector<size_t> > labelIslands = dsf.arrays(); |
| 305 | size_t label; vector<size_t> island; |
| 306 | for(const auto& li: labelIslands) { |
| 307 | tie(args&: label, args&: island) = li; |
| 308 | vector<size_t> filteredIsland; // remove singular cameras from array |
| 309 | filteredIsland.reserve(n: island.size()); |
| 310 | for(const size_t key: island) { |
| 311 | if ((isCamera[key] && singularCameras.find(x: key) == singularCameras.end()) || // not singular |
| 312 | (isLandmark[key] && singularLandmarks.find(x: key) == singularLandmarks.end()) || // not singular |
| 313 | (!isCamera[key] && !isLandmark[key])) { // the key is not involved in any factor, so the type is undertermined |
| 314 | filteredIsland.push_back(x: key); |
| 315 | } |
| 316 | } |
| 317 | islands.push_back(x: filteredIsland); |
| 318 | } |
| 319 | |
| 320 | // sanity check |
| 321 | size_t nrKeys = 0; |
| 322 | for(const vector<size_t>& island: islands) |
| 323 | nrKeys += island.size(); |
| 324 | if (nrKeys != keys.size()) { |
| 325 | cout << nrKeys << " vs " << keys.size() << endl; |
| 326 | throw runtime_error("findIslands: the number of keys is inconsistent!" ); |
| 327 | } |
| 328 | |
| 329 | |
| 330 | if (verbose) cout << "found " << islands.size() << " islands!" << endl; |
| 331 | return islands; |
| 332 | } |
| 333 | |
| 334 | /* ************************************************************************* */ |
| 335 | // return the number of intersection between two **sorted** landmark vectors |
| 336 | inline int getNrCommonLandmarks(const vector<size_t>& landmarks1, const vector<size_t>& landmarks2){ |
| 337 | size_t i1 = 0, i2 = 0; |
| 338 | int nrCommonLandmarks = 0; |
| 339 | while (i1 < landmarks1.size() && i2 < landmarks2.size()) { |
| 340 | if (landmarks1[i1] < landmarks2[i2]) |
| 341 | i1 ++; |
| 342 | else if (landmarks1[i1] > landmarks2[i2]) |
| 343 | i2 ++; |
| 344 | else { |
| 345 | i1++; i2++; |
| 346 | nrCommonLandmarks ++; |
| 347 | } |
| 348 | } |
| 349 | return nrCommonLandmarks; |
| 350 | } |
| 351 | |
| 352 | /* ************************************************************************* */ |
| 353 | void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys, |
| 354 | const std::vector<int>& dictionary, GenericGraph3D& reducedGraph) { |
| 355 | |
| 356 | typedef size_t LandmarkKey; |
| 357 | // get a mapping from each landmark to its connected cameras |
| 358 | vector<vector<LandmarkKey> > cameraToLandmarks(dictionary.size()); |
| 359 | // for odometry xi-xj where i<j, we always store cameraToCamera[i] = j, otherwise equal to -1 if no odometry |
| 360 | vector<int> cameraToCamera(dictionary.size(), -1); |
| 361 | size_t key_i, key_j; |
| 362 | for(const sharedGenericFactor3D& factor_: graph) { |
| 363 | if (factor_->key1.type == NODE_POSE_3D) { |
| 364 | if (factor_->key2.type == NODE_LANDMARK_3D) {// projection factor |
| 365 | cameraToLandmarks[factor_->key1.index].push_back(x: factor_->key2.index); |
| 366 | } |
| 367 | else { // odometry factor |
| 368 | if (factor_->key1.index < factor_->key2.index) { |
| 369 | key_i = factor_->key1.index; |
| 370 | key_j = factor_->key2.index; |
| 371 | } else { |
| 372 | key_i = factor_->key2.index; |
| 373 | key_j = factor_->key1.index; |
| 374 | } |
| 375 | cameraToCamera[key_i] = key_j; |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // sort the landmark keys for the late getNrCommonLandmarks call |
| 381 | for(vector<LandmarkKey> &landmarks: cameraToLandmarks){ |
| 382 | if (!landmarks.empty()) |
| 383 | std::sort(first: landmarks.begin(), last: landmarks.end()); |
| 384 | } |
| 385 | |
| 386 | // generate the reduced graph |
| 387 | reducedGraph.clear(); |
| 388 | int factorIndex = 0; |
| 389 | int camera1, camera2, nrTotalConstraints; |
| 390 | bool hasOdometry; |
| 391 | for (size_t i1=0; i1<cameraKeys.size()-1; ++i1) { |
| 392 | for (size_t i2=i1+1; i2<cameraKeys.size(); ++i2) { |
| 393 | camera1 = cameraKeys[i1]; |
| 394 | camera2 = cameraKeys[i2]; |
| 395 | int nrCommonLandmarks = getNrCommonLandmarks(landmarks1: cameraToLandmarks[camera1], landmarks2: cameraToLandmarks[camera2]); |
| 396 | hasOdometry = cameraToCamera[camera1] == camera2; |
| 397 | if (nrCommonLandmarks > 0 || hasOdometry) { |
| 398 | nrTotalConstraints = 2 * nrCommonLandmarks + (hasOdometry ? 6 : 0); |
| 399 | reducedGraph.push_back(x: std::make_shared<GenericFactor3D>(args&: camera1, args&: camera2, |
| 400 | args: factorIndex++, args: NODE_POSE_3D, args: NODE_POSE_3D, args&: nrTotalConstraints)); |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | /* ************************************************************************* */ |
| 407 | void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals, |
| 408 | WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) { |
| 409 | workspace.prepareDictionary(keys: frontals); |
| 410 | vector<size_t> nrConstraints(workspace.dictionary.size(), 0); |
| 411 | |
| 412 | // summarize the constraint number |
| 413 | const vector<int>& dictionary = workspace.dictionary; |
| 414 | vector<bool> isValidCamera(workspace.dictionary.size(), false); |
| 415 | vector<bool> isValidLandmark(workspace.dictionary.size(), false); |
| 416 | for(const sharedGenericFactor3D& factor_: graph) { |
| 417 | assert(factor_->key1.type == NODE_POSE_3D); |
| 418 | //assert(factor_->key2.type == NODE_LANDMARK_3D); |
| 419 | const size_t& key1 = factor_->key1.index; |
| 420 | const size_t& key2 = factor_->key2.index; |
| 421 | if (dictionary[key1] == -1 || dictionary[key2] == -1) |
| 422 | continue; |
| 423 | |
| 424 | isValidCamera[key1] = true; |
| 425 | if(factor_->key2.type == NODE_LANDMARK_3D) |
| 426 | isValidLandmark[key2] = true; |
| 427 | else |
| 428 | isValidCamera[key2] = true; |
| 429 | |
| 430 | nrConstraints[key1]++; |
| 431 | nrConstraints[key2]++; |
| 432 | |
| 433 | // a single pose constraint is sufficient for stereo, so we add 2 to the counter |
| 434 | // for a total of 3, i.e. the same as 3 landmarks fully constraining the camera |
| 435 | if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){ |
| 436 | nrConstraints[key1]+=2; |
| 437 | nrConstraints[key2]+=2; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // find the minimum constraint for cameras and landmarks |
| 442 | size_t minFoundConstraintsPerCamera = 10000; |
| 443 | size_t minFoundConstraintsPerLandmark = 10000; |
| 444 | |
| 445 | for (size_t i=0; i<isValidCamera.size(); i++) { |
| 446 | if (isValidCamera[i]) { |
| 447 | minFoundConstraintsPerCamera = std::min(a: nrConstraints[i], b: minFoundConstraintsPerCamera); |
| 448 | if (nrConstraints[i] < minNrConstraintsPerCamera) |
| 449 | cout << "!!!!!!!!!!!!!!!!!!! camera with " << nrConstraints[i] << " constraint: " << i << endl; |
| 450 | } |
| 451 | |
| 452 | } |
| 453 | for (size_t j=0; j<isValidLandmark.size(); j++) { |
| 454 | if (isValidLandmark[j]) { |
| 455 | minFoundConstraintsPerLandmark = std::min(a: nrConstraints[j], b: minFoundConstraintsPerLandmark); |
| 456 | if (nrConstraints[j] < minNrConstraintsPerLandmark) |
| 457 | cout << "!!!!!!!!!!!!!!!!!!! landmark with " << nrConstraints[j] << " constraint: " << j << endl; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | // debug info |
| 462 | for(const size_t key: frontals) { |
| 463 | if (isValidCamera[key] && nrConstraints[key] < minNrConstraintsPerCamera) |
| 464 | cout << "singular camera:" << key << " with " << nrConstraints[key] << " constraints" << endl; |
| 465 | } |
| 466 | |
| 467 | if (minFoundConstraintsPerCamera < minNrConstraintsPerCamera) |
| 468 | throw runtime_error("checkSingularity:minConstraintsPerCamera < " + std::to_string(val: minFoundConstraintsPerCamera)); |
| 469 | if (minFoundConstraintsPerLandmark < minNrConstraintsPerLandmark) |
| 470 | throw runtime_error("checkSingularity:minConstraintsPerLandmark < " + std::to_string(val: minFoundConstraintsPerLandmark)); |
| 471 | } |
| 472 | |
| 473 | }} // namespace |
| 474 | |