| 1 | /* |
| 2 | * FindSeparator-inl.h |
| 3 | * |
| 4 | * Created on: Nov 23, 2010 |
| 5 | * Updated: Feb 20. 2014 |
| 6 | * Author: nikai |
| 7 | * Author: Andrew Melim |
| 8 | * Description: find the separator of bisectioning for a given graph |
| 9 | */ |
| 10 | |
| 11 | #pragma once |
| 12 | |
| 13 | #include <stdexcept> |
| 14 | #include <iostream> |
| 15 | #include <vector> |
| 16 | #include <optional> |
| 17 | #include <cassert> |
| 18 | #include <boost/shared_array.hpp> |
| 19 | |
| 20 | #include <gtsam/base/timing.h> |
| 21 | |
| 22 | #include "FindSeparator.h" |
| 23 | |
| 24 | #include <metis.h> |
| 25 | |
| 26 | extern "C" { |
| 27 | #include <metislib.h> |
| 28 | } |
| 29 | |
| 30 | |
| 31 | |
| 32 | namespace gtsam { namespace partition { |
| 33 | |
| 34 | typedef boost::shared_array<idx_t> sharedInts; |
| 35 | |
| 36 | /* ************************************************************************* */ |
| 37 | /** |
| 38 | * Return the size of the separator and the partiion indices {part} |
| 39 | * Part [j] is 0, 1, or 2, depending on |
| 40 | * whether node j is in the left part of the graph, the right part, or the |
| 41 | * separator, respectively |
| 42 | */ |
| 43 | std::pair<idx_t, sharedInts> separatorMetis(idx_t n, const sharedInts& xadj, |
| 44 | const sharedInts& adjncy, const sharedInts& adjwgt, bool verbose) { |
| 45 | |
| 46 | // control parameters |
| 47 | std::vector<idx_t> vwgt; // the weights of the vertices |
| 48 | idx_t options[METIS_NOPTIONS]; |
| 49 | METIS_SetDefaultOptions(options); // use defaults |
| 50 | idx_t sepsize; // the size of the separator, output |
| 51 | sharedInts part_(new idx_t[n]); // the partition of each vertex, output |
| 52 | |
| 53 | // set uniform weights on the vertices |
| 54 | vwgt.assign(n: n, val: 1); |
| 55 | |
| 56 | // TODO: Fix at later time |
| 57 | //boost::timer::cpu_timer TOTALTmr; |
| 58 | if (verbose) { |
| 59 | printf(format: "**********************************************************************\n" ); |
| 60 | printf(format: "Graph Information ---------------------------------------------------\n" ); |
| 61 | printf(format: " #Vertices: %d, #Edges: %u\n" , n, *(xadj.get()+n) / 2); |
| 62 | printf(format: "\nND Partitioning... -------------------------------------------\n" ); |
| 63 | //TOTALTmr.start() |
| 64 | } |
| 65 | |
| 66 | // call metis parition routine |
| 67 | METIS_ComputeVertexSeparator(nvtxs: &n, xadj: xadj.get(), adjncy: adjncy.get(), |
| 68 | vwgt: &vwgt[0], options, sepsize: &sepsize, part: part_.get()); |
| 69 | |
| 70 | if (verbose) { |
| 71 | //boost::cpu_times const elapsed_times(timer.elapsed()); |
| 72 | //printf("\nTiming Information --------------------------------------------------\n"); |
| 73 | //printf(" Total: \t\t %7.3f\n", elapsed_times); |
| 74 | printf(format: " Sep size: \t\t %d\n" , sepsize); |
| 75 | printf(format: "**********************************************************************\n" ); |
| 76 | } |
| 77 | |
| 78 | return std::make_pair(x&: sepsize, y&: part_); |
| 79 | } |
| 80 | |
| 81 | /* ************************************************************************* */ |
| 82 | void modefied_EdgeComputeSeparator(idx_t *nvtxs, idx_t *xadj, idx_t *adjncy, idx_t *vwgt, |
| 83 | idx_t *adjwgt, idx_t *options, idx_t *edgecut, idx_t *part) |
| 84 | { |
| 85 | idx_t i, ncon; |
| 86 | graph_t *graph; |
| 87 | real_t *tpwgts2; |
| 88 | ctrl_t *ctrl; |
| 89 | ctrl = SetupCtrl(optype: METIS_OP_OMETIS, options, ncon: 1, nparts: 3, tpwgts: nullptr, ubvec: nullptr); |
| 90 | ctrl->iptype = METIS_IPTYPE_GROW; |
| 91 | //if () == nullptr) |
| 92 | // return METIS_ERROR_INPUT; |
| 93 | |
| 94 | InitRandom(ctrl->seed); |
| 95 | |
| 96 | graph = SetupGraph(ctrl, nvtxs: *nvtxs, ncon: 1, xadj, adjncy, vwgt, vsize: nullptr, adjwgt: nullptr); |
| 97 | |
| 98 | AllocateWorkSpace(ctrl, graph); |
| 99 | |
| 100 | ncon = graph->ncon; |
| 101 | ctrl->ncuts = 1; |
| 102 | |
| 103 | /* determine the weights of the two partitions as a function of the weight of the |
| 104 | target partition weights */ |
| 105 | |
| 106 | tpwgts2 = rwspacemalloc(ctrl, 2*ncon); |
| 107 | for (i=0; i<ncon; i++) { |
| 108 | tpwgts2[i] = rsum(n: (2>>1), x: ctrl->tpwgts+i, incx: ncon); |
| 109 | tpwgts2[ncon+i] = 1.0 - tpwgts2[i]; |
| 110 | } |
| 111 | /* perform the bisection */ |
| 112 | *edgecut = MultilevelBisect(ctrl, graph, tpwgts: tpwgts2); |
| 113 | |
| 114 | // ConstructMinCoverSeparator(&ctrl, &graph, 1.05); |
| 115 | // *edgecut = graph->mincut; |
| 116 | // *sepsize = graph.pwgts[2]; |
| 117 | icopy(n: *nvtxs, a: graph->where, b: part); |
| 118 | std::cout << "Finished bisection:" << *edgecut << std::endl; |
| 119 | FreeGraph(graph: &graph); |
| 120 | |
| 121 | FreeCtrl(r_ctrl: &ctrl); |
| 122 | } |
| 123 | |
| 124 | /* ************************************************************************* */ |
| 125 | /** |
| 126 | * Return the number of edge cuts and the partition indices {part} |
| 127 | * Part [j] is 0 or 1, depending on |
| 128 | * whether node j is in the left part of the graph or the right part respectively |
| 129 | */ |
| 130 | std::pair<int, sharedInts> edgeMetis(idx_t n, const sharedInts& xadj, const sharedInts& adjncy, |
| 131 | const sharedInts& adjwgt, bool verbose) { |
| 132 | |
| 133 | // control parameters |
| 134 | std::vector<idx_t> vwgt; // the weights of the vertices |
| 135 | idx_t options[METIS_NOPTIONS]; |
| 136 | METIS_SetDefaultOptions(options); // use defaults |
| 137 | idx_t edgecut; // the number of edge cuts, output |
| 138 | sharedInts part_(new idx_t[n]); // the partition of each vertex, output |
| 139 | |
| 140 | // set uniform weights on the vertices |
| 141 | vwgt.assign(n: n, val: 1); |
| 142 | |
| 143 | //TODO: Fix later |
| 144 | //boost::timer TOTALTmr; |
| 145 | if (verbose) { |
| 146 | printf(format: "**********************************************************************\n" ); |
| 147 | printf(format: "Graph Information ---------------------------------------------------\n" ); |
| 148 | printf(format: " #Vertices: %d, #Edges: %u\n" , n, *(xadj.get()+n) / 2); |
| 149 | printf(format: "\nND Partitioning... -------------------------------------------\n" ); |
| 150 | //cleartimer(TOTALTmr); |
| 151 | //starttimer(TOTALTmr); |
| 152 | } |
| 153 | |
| 154 | //int wgtflag = 1; // only edge weights |
| 155 | //int numflag = 0; // c style numbering starting from 0 |
| 156 | //int nparts = 2; // partition the graph to 2 submaps |
| 157 | modefied_EdgeComputeSeparator(nvtxs: &n, xadj: xadj.get(), adjncy: adjncy.get(), vwgt: &vwgt[0], adjwgt: adjwgt.get(), |
| 158 | options, edgecut: &edgecut, part: part_.get()); |
| 159 | |
| 160 | |
| 161 | if (verbose) { |
| 162 | //stoptimer(TOTALTmr); |
| 163 | printf(format: "\nTiming Information --------------------------------------------------\n" ); |
| 164 | //printf(" Total: \t\t %7.3f\n", gettimer(TOTALTmr)); |
| 165 | printf(format: " Edge cuts: \t\t %d\n" , edgecut); |
| 166 | printf(format: "**********************************************************************\n" ); |
| 167 | } |
| 168 | |
| 169 | return std::make_pair(x&: edgecut, y&: part_); |
| 170 | } |
| 171 | |
| 172 | /* ************************************************************************* */ |
| 173 | /** |
| 174 | * Prepare the data structure {xadj} and {adjncy} required by metis |
| 175 | * xadj always has the size equal to the no. of the nodes plus 1 |
| 176 | * adjncy always has the size equal to two times of the no. of the edges in the Metis graph |
| 177 | */ |
| 178 | template <class GenericGraph> |
| 179 | void prepareMetisGraph(const GenericGraph& graph, const std::vector<size_t>& keys, WorkSpace& workspace, |
| 180 | sharedInts* ptr_xadj, sharedInts* ptr_adjncy, sharedInts* ptr_adjwgt) { |
| 181 | |
| 182 | typedef std::vector<int> Weights; |
| 183 | typedef std::vector<int> Neighbors; |
| 184 | typedef std::pair<Neighbors, Weights> NeighborsInfo; |
| 185 | |
| 186 | // set up dictionary |
| 187 | std::vector<int>& dictionary = workspace.dictionary; |
| 188 | workspace.prepareDictionary(keys); |
| 189 | |
| 190 | // prepare for {adjacencyMap}, a pair of neighbor indices and the correponding edge weights |
| 191 | int numNodes = keys.size(); |
| 192 | int numEdges = 0; |
| 193 | std::vector<NeighborsInfo> adjacencyMap; |
| 194 | adjacencyMap.resize(new_size: numNodes); |
| 195 | std::cout << "Number of nodes: " << adjacencyMap.size() << std::endl; |
| 196 | int index1, index2; |
| 197 | |
| 198 | for(const typename GenericGraph::value_type& factor: graph){ |
| 199 | index1 = dictionary[factor->key1.index]; |
| 200 | index2 = dictionary[factor->key2.index]; |
| 201 | std::cout << "index1: " << index1 << std::endl; |
| 202 | std::cout << "index2: " << index2 << std::endl; |
| 203 | // if both nodes are in the current graph, i.e. not a joint factor between frontal and separator |
| 204 | if (index1 >= 0 && index2 >= 0) { |
| 205 | std::pair<Neighbors, Weights>& adjacencyMap1 = adjacencyMap[index1]; |
| 206 | std::pair<Neighbors, Weights>& adjacencyMap2 = adjacencyMap[index2]; |
| 207 | try{ |
| 208 | adjacencyMap1.first.push_back(x: index2); |
| 209 | adjacencyMap1.second.push_back(factor->weight); |
| 210 | adjacencyMap2.first.push_back(x: index1); |
| 211 | adjacencyMap2.second.push_back(factor->weight); |
| 212 | }catch(std::exception& e){ |
| 213 | std::cout << e.what() << std::endl; |
| 214 | } |
| 215 | numEdges++; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | // prepare for {xadj}, {adjncy}, and {adjwgt} |
| 220 | *ptr_xadj = sharedInts(new idx_t[numNodes+1]); |
| 221 | *ptr_adjncy = sharedInts(new idx_t[numEdges*2]); |
| 222 | *ptr_adjwgt = sharedInts(new idx_t[numEdges*2]); |
| 223 | sharedInts& xadj = *ptr_xadj; |
| 224 | sharedInts& adjncy = *ptr_adjncy; |
| 225 | sharedInts& adjwgt = *ptr_adjwgt; |
| 226 | int ind_xadj = 0, ind_adjncy = 0; |
| 227 | for(const NeighborsInfo& info: adjacencyMap) { |
| 228 | *(xadj.get() + ind_xadj) = ind_adjncy; |
| 229 | std::copy(first: info.first .begin(), last: info.first .end(), result: adjncy.get() + ind_adjncy); |
| 230 | std::copy(first: info.second.begin(), last: info.second.end(), result: adjwgt.get() + ind_adjncy); |
| 231 | assert(info.first.size() == info.second.size()); |
| 232 | ind_adjncy += info.first.size(); |
| 233 | ind_xadj ++; |
| 234 | } |
| 235 | if (ind_xadj != numNodes) throw std::runtime_error("prepareMetisGraph_: ind_xadj != numNodes" ); |
| 236 | *(xadj.get() + ind_xadj) = ind_adjncy; |
| 237 | } |
| 238 | |
| 239 | /* ************************************************************************* */ |
| 240 | template<class GenericGraph> |
| 241 | std::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph, |
| 242 | const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) { |
| 243 | // create a metis graph |
| 244 | size_t numKeys = keys.size(); |
| 245 | if (verbose) |
| 246 | std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl; |
| 247 | |
| 248 | sharedInts xadj, adjncy, adjwgt; |
| 249 | |
| 250 | prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt); |
| 251 | |
| 252 | // run ND on the graph |
| 253 | const auto [sepsize, part] = separatorMetis(n: numKeys, xadj, adjncy, adjwgt, verbose); |
| 254 | if (!sepsize) return std::optional<MetisResult>(); |
| 255 | |
| 256 | // convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later |
| 257 | // we will have more submaps |
| 258 | MetisResult result; |
| 259 | result.C.reserve(n: sepsize); |
| 260 | result.A.reserve(n: numKeys - sepsize); |
| 261 | result.B.reserve(n: numKeys - sepsize); |
| 262 | int* ptr_part = part.get(); |
| 263 | std::vector<size_t>::const_iterator itKey = keys.begin(); |
| 264 | std::vector<size_t>::const_iterator itKeyLast = keys.end(); |
| 265 | while(itKey != itKeyLast) { |
| 266 | switch(*(ptr_part++)) { |
| 267 | case 0: result.A.push_back(x: *(itKey++)); break; |
| 268 | case 1: result.B.push_back(x: *(itKey++)); break; |
| 269 | case 2: result.C.push_back(x: *(itKey++)); break; |
| 270 | default: throw std::runtime_error("separatorPartitionByMetis: invalid results from Metis ND!" ); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | if (verbose) { |
| 275 | std::cout << "total key: " << keys.size() |
| 276 | << " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " |
| 277 | << result.C.size() << "; sepsize from Metis = " << sepsize << std::endl; |
| 278 | //throw runtime_error("separatorPartitionByMetis:stop for debug"); |
| 279 | } |
| 280 | |
| 281 | if(result.C.size() != size_t(sepsize)) { |
| 282 | std::cout << "total key: " << keys.size() |
| 283 | << " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " << result.C.size() |
| 284 | << "; sepsize from Metis = " << sepsize << std::endl; |
| 285 | throw std::runtime_error("separatorPartitionByMetis: invalid sepsize from Metis ND!" ); |
| 286 | } |
| 287 | |
| 288 | return result; |
| 289 | } |
| 290 | |
| 291 | /* *************************************************************************/ |
| 292 | template<class GenericGraph> |
| 293 | std::optional<MetisResult> edgePartitionByMetis(const GenericGraph& graph, |
| 294 | const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) { |
| 295 | |
| 296 | // a small hack for handling the camera1-camera2 case used in the unit tests |
| 297 | if (graph.size() == 1 && keys.size() == 2) { |
| 298 | MetisResult result; |
| 299 | result.A.push_back(x: keys.front()); |
| 300 | result.B.push_back(x: keys.back()); |
| 301 | return result; |
| 302 | } |
| 303 | |
| 304 | // create a metis graph |
| 305 | size_t numKeys = keys.size(); |
| 306 | if (verbose) std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl; |
| 307 | sharedInts xadj, adjncy, adjwgt; |
| 308 | prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt); |
| 309 | |
| 310 | // run metis on the graph |
| 311 | const auto [edgecut, part] = edgeMetis(n: numKeys, xadj, adjncy, adjwgt, verbose); |
| 312 | |
| 313 | // convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later we will have more submaps |
| 314 | MetisResult result; |
| 315 | result.A.reserve(n: numKeys); |
| 316 | result.B.reserve(n: numKeys); |
| 317 | int* ptr_part = part.get(); |
| 318 | std::vector<size_t>::const_iterator itKey = keys.begin(); |
| 319 | std::vector<size_t>::const_iterator itKeyLast = keys.end(); |
| 320 | while(itKey != itKeyLast) { |
| 321 | if (*ptr_part != 0 && *ptr_part != 1) |
| 322 | std::cout << *ptr_part << "!!!" << std::endl; |
| 323 | switch(*(ptr_part++)) { |
| 324 | case 0: result.A.push_back(x: *(itKey++)); break; |
| 325 | case 1: result.B.push_back(x: *(itKey++)); break; |
| 326 | default: throw std::runtime_error("edgePartitionByMetis: invalid results from Metis ND!" ); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | if (verbose) { |
| 331 | std::cout << "the size of two submaps in the reduced graph: " << result.A.size() |
| 332 | << " " << result.B.size() << std::endl; |
| 333 | int edgeCut = 0; |
| 334 | |
| 335 | for(const typename GenericGraph::value_type& factor: graph){ |
| 336 | int key1 = factor->key1.index; |
| 337 | int key2 = factor->key2.index; |
| 338 | // print keys and their subgraph assignment |
| 339 | std::cout << key1; |
| 340 | if (std::find(first: result.A.begin(), last: result.A.end(), val: key1) != result.A.end()) std::cout <<"A " ; |
| 341 | if (std::find(first: result.B.begin(), last: result.B.end(), val: key1) != result.B.end()) std::cout <<"B " ; |
| 342 | |
| 343 | std::cout << key2; |
| 344 | if (std::find(first: result.A.begin(), last: result.A.end(), val: key2) != result.A.end()) std::cout <<"A " ; |
| 345 | if (std::find(first: result.B.begin(), last: result.B.end(), val: key2) != result.B.end()) std::cout <<"B " ; |
| 346 | std::cout << "weight " << factor->weight;; |
| 347 | |
| 348 | // find vertices that were assigned to sets A & B. Their edge will be cut |
| 349 | if ((std::find(first: result.A.begin(), last: result.A.end(), val: key1) != result.A.end() && |
| 350 | std::find(first: result.B.begin(), last: result.B.end(), val: key2) != result.B.end()) || |
| 351 | (std::find(first: result.B.begin(), last: result.B.end(), val: key1) != result.B.end() && |
| 352 | std::find(first: result.A.begin(), last: result.A.end(), val: key2) != result.A.end())){ |
| 353 | edgeCut ++; |
| 354 | std::cout << " CUT " ; |
| 355 | } |
| 356 | std::cout << std::endl; |
| 357 | } |
| 358 | std::cout << "edgeCut: " << edgeCut << std::endl; |
| 359 | } |
| 360 | |
| 361 | return result; |
| 362 | } |
| 363 | |
| 364 | /* ************************************************************************* */ |
| 365 | bool isLargerIsland(const std::vector<size_t>& island1, const std::vector<size_t>& island2) { |
| 366 | return island1.size() > island2.size(); |
| 367 | } |
| 368 | |
| 369 | /* ************************************************************************* */ |
| 370 | // debug functions |
| 371 | void printIsland(const std::vector<size_t>& island) { |
| 372 | std::cout << "island: " ; |
| 373 | for(const size_t key: island) |
| 374 | std::cout << key << " " ; |
| 375 | std::cout << std::endl; |
| 376 | } |
| 377 | |
| 378 | void printIslands(const std::list<std::vector<size_t> >& islands) { |
| 379 | for(const std::vector<std::size_t>& island: islands) |
| 380 | printIsland(island); |
| 381 | } |
| 382 | |
| 383 | void printNumCamerasLandmarks(const std::vector<size_t>& keys, const std::vector<Symbol>& int2symbol) { |
| 384 | int numCamera = 0, numLandmark = 0; |
| 385 | for(const size_t key: keys) |
| 386 | if (int2symbol[key].chr() == 'x') |
| 387 | numCamera++; |
| 388 | else |
| 389 | numLandmark++; |
| 390 | std::cout << "numCamera: " << numCamera << " numLandmark: " << numLandmark << std::endl; |
| 391 | } |
| 392 | |
| 393 | /* ************************************************************************* */ |
| 394 | template<class GenericGraph> |
| 395 | void addLandmarkToPartitionResult(const GenericGraph& graph, const std::vector<size_t>& landmarkKeys, |
| 396 | MetisResult& partitionResult, WorkSpace& workspace) { |
| 397 | |
| 398 | // set up cameras in the dictionary |
| 399 | std::vector<size_t>& A = partitionResult.A; |
| 400 | std::vector<size_t>& B = partitionResult.B; |
| 401 | std::vector<size_t>& C = partitionResult.C; |
| 402 | std::vector<int>& dictionary = workspace.dictionary; |
| 403 | std::fill(first: dictionary.begin(), last: dictionary.end(), value: -1); |
| 404 | for(const size_t a: A) |
| 405 | dictionary[a] = 1; |
| 406 | for(const size_t b: B) |
| 407 | dictionary[b] = 2; |
| 408 | if (!C.empty()) |
| 409 | throw std::runtime_error("addLandmarkToPartitionResult: C is not empty" ); |
| 410 | |
| 411 | // set up landmarks |
| 412 | size_t i,j; |
| 413 | for(const typename GenericGraph::value_type& factor: graph) { |
| 414 | i = factor->key1.index; |
| 415 | j = factor->key2.index; |
| 416 | if (dictionary[j] == 0) // if the landmark is already in the separator, continue |
| 417 | continue; |
| 418 | else if (dictionary[j] == -1) |
| 419 | dictionary[j] = dictionary[i]; |
| 420 | else { |
| 421 | if (dictionary[j] != dictionary[i]) |
| 422 | dictionary[j] = 0; |
| 423 | } |
| 424 | // if (j == 67980) |
| 425 | // std::cout << "dictionary[67980]" << dictionary[j] << std::endl; |
| 426 | } |
| 427 | |
| 428 | for(const size_t j: landmarkKeys) { |
| 429 | switch(dictionary[j]) { |
| 430 | case 0: C.push_back(x: j); break; |
| 431 | case 1: A.push_back(x: j); break; |
| 432 | case 2: B.push_back(x: j); break; |
| 433 | default: std::cout << j << ": " << dictionary[j] << std::endl; |
| 434 | throw std::runtime_error("addLandmarkToPartitionResult: wrong status for landmark" ); |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | #define REDUCE_CAMERA_GRAPH |
| 440 | |
| 441 | /* ************************************************************************* */ |
| 442 | template<class GenericGraph> |
| 443 | std::optional<MetisResult> findPartitoning(const GenericGraph& graph, const std::vector<size_t>& keys, |
| 444 | WorkSpace& workspace, bool verbose, |
| 445 | const std::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph) { |
| 446 | std::optional<MetisResult> result; |
| 447 | GenericGraph reducedGraph; |
| 448 | std::vector<size_t> keyToPartition; |
| 449 | std::vector<size_t> cameraKeys, landmarkKeys; |
| 450 | if (reduceGraph) { |
| 451 | if (!int2symbol.has_value()) |
| 452 | throw std::invalid_argument("findSeparator: int2symbol must be valid!" ); |
| 453 | |
| 454 | // find out all the landmark keys, which are to be eliminated |
| 455 | cameraKeys.reserve(n: keys.size()); |
| 456 | landmarkKeys.reserve(n: keys.size()); |
| 457 | for(const size_t key: keys) { |
| 458 | if((*int2symbol)[key].chr() == 'x') |
| 459 | cameraKeys.push_back(x: key); |
| 460 | else |
| 461 | landmarkKeys.push_back(x: key); |
| 462 | } |
| 463 | |
| 464 | keyToPartition = cameraKeys; |
| 465 | workspace.prepareDictionary(keys: keyToPartition); |
| 466 | const std::vector<int>& dictionary = workspace.dictionary; |
| 467 | reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reducedGraph); |
| 468 | std::cout << "original graph: V" << keys.size() << ", E" << graph.size() |
| 469 | << " --> reduced graph: V" << cameraKeys.size() << ", E" << reducedGraph.size() << std::endl; |
| 470 | result = edgePartitionByMetis(reducedGraph, keyToPartition, workspace, verbose); |
| 471 | } else // call Metis to partition the graph to A, B, C |
| 472 | result = separatorPartitionByMetis(graph, keys, workspace, verbose); |
| 473 | |
| 474 | if (!result.has_value()) { |
| 475 | std::cout << "metis failed!" << std::endl; |
| 476 | return {}; |
| 477 | } |
| 478 | |
| 479 | if (reduceGraph) { |
| 480 | addLandmarkToPartitionResult(graph, landmarkKeys, *result, workspace); |
| 481 | std::cout << "the separator size: " << result->C.size() << " landmarks" << std::endl; |
| 482 | } |
| 483 | |
| 484 | return result; |
| 485 | } |
| 486 | |
| 487 | /* ************************************************************************* */ |
| 488 | template<class GenericGraph> |
| 489 | int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys, |
| 490 | const int minNodesPerMap, WorkSpace& workspace, bool verbose, |
| 491 | const std::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph, |
| 492 | const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { |
| 493 | |
| 494 | std::optional<MetisResult> result = findPartitoning(graph, keys, workspace, |
| 495 | verbose, int2symbol, reduceGraph); |
| 496 | |
| 497 | // find the island in A and B, and make them separated submaps |
| 498 | typedef std::vector<size_t> Island; |
| 499 | std::list<Island> islands; |
| 500 | |
| 501 | std::list<Island> islands_in_A = findIslands(graph, result->A, workspace, |
| 502 | minNrConstraintsPerCamera, minNrConstraintsPerLandmark); |
| 503 | |
| 504 | std::list<Island> islands_in_B = findIslands(graph, result->B, workspace, |
| 505 | minNrConstraintsPerCamera, minNrConstraintsPerLandmark); |
| 506 | |
| 507 | islands.insert(position: islands.end(), first: islands_in_A.begin(), last: islands_in_A.end()); |
| 508 | islands.insert(position: islands.end(), first: islands_in_B.begin(), last: islands_in_B.end()); |
| 509 | islands.sort(comp: isLargerIsland); |
| 510 | size_t numIsland0 = islands.size(); |
| 511 | |
| 512 | #ifdef NDEBUG |
| 513 | // verbose = true; |
| 514 | // if (!int2symbol) throw std::invalid_argument("findSeparator: int2symbol is not set!"); |
| 515 | // std::cout << "sep size: " << result->C.size() << "; "; |
| 516 | // printNumCamerasLandmarks(result->C, *int2symbol); |
| 517 | // std::cout << "no. of island: " << islands.size() << "; "; |
| 518 | // std::cout << "island size: "; |
| 519 | // for(const Island& island: islands) |
| 520 | // std::cout << island.size() << " "; |
| 521 | // std::cout << std::endl; |
| 522 | |
| 523 | // for(const Island& island: islands) { |
| 524 | // printNumCamerasLandmarks(island, int2symbol); |
| 525 | // } |
| 526 | #endif |
| 527 | |
| 528 | // absorb small components into the separator |
| 529 | size_t oldSize = islands.size(); |
| 530 | while(true) { |
| 531 | if (islands.size() < 2) { |
| 532 | std::cout << "numIsland: " << numIsland0 << std::endl; |
| 533 | throw std::runtime_error("findSeparator: found fewer than 2 submaps!" ); |
| 534 | } |
| 535 | |
| 536 | std::list<Island>::reference island = islands.back(); |
| 537 | if ((int)island.size() >= minNodesPerMap) break; |
| 538 | result->C.insert(position: result->C.end(), first: island.begin(), last: island.end()); |
| 539 | islands.pop_back(); |
| 540 | } |
| 541 | if (islands.size() != oldSize){ |
| 542 | if (verbose) std::cout << oldSize << "-" << oldSize - islands.size() << " submap(s);\t" << std::endl; |
| 543 | } |
| 544 | else{ |
| 545 | if (verbose) std::cout << oldSize << " submap(s);\t" << std::endl; |
| 546 | } |
| 547 | |
| 548 | // generate the node map |
| 549 | std::vector<int>& partitionTable = workspace.partitionTable; |
| 550 | std::fill(first: partitionTable.begin(), last: partitionTable.end(), value: -1); |
| 551 | for(const size_t key: result->C) |
| 552 | partitionTable[key] = 0; |
| 553 | int idx = 0; |
| 554 | for(const Island& island: islands) { |
| 555 | idx++; |
| 556 | for(const size_t key: island) { |
| 557 | partitionTable[key] = idx; |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | return islands.size(); |
| 562 | } |
| 563 | |
| 564 | }} //namespace |
| 565 | |