| 1 | /** |
| 2 | * @file Pendulum.h |
| 3 | * @brief Three-way factors for the pendulum dynamics as in [Stern06siggraph] for |
| 4 | * (1) explicit Euler method, (2) implicit Euler method, and (3) sympletic Euler method. |
| 5 | * Note that all methods use the same formulas for the factors. They are only different in |
| 6 | * the way we connect variables using those factors in the graph. |
| 7 | * @author Duy-Nguyen Ta |
| 8 | */ |
| 9 | |
| 10 | #pragma once |
| 11 | |
| 12 | #include <gtsam/nonlinear/NonlinearFactor.h> |
| 13 | |
| 14 | namespace gtsam { |
| 15 | |
| 16 | //************************************************************************* |
| 17 | /** |
| 18 | * This class implements the first constraint. |
| 19 | * - For explicit Euler method: q_{k+1} = q_k + h*v_k |
| 20 | * - For implicit Euler method: q_{k+1} = q_k + h*v_{k+1} |
| 21 | * - For sympletic Euler method: q_{k+1} = q_k + h*v_{k+1} |
| 22 | */ |
| 23 | class PendulumFactor1: public NoiseModelFactorN<double, double, double> { |
| 24 | public: |
| 25 | |
| 26 | protected: |
| 27 | typedef NoiseModelFactorN<double, double, double> Base; |
| 28 | |
| 29 | /** default constructor to allow for serialization */ |
| 30 | PendulumFactor1() {} |
| 31 | |
| 32 | double h_; // time step |
| 33 | |
| 34 | public: |
| 35 | |
| 36 | // Provide access to the Matrix& version of evaluateError: |
| 37 | using Base::evaluateError; |
| 38 | |
| 39 | typedef std::shared_ptr<PendulumFactor1> shared_ptr; |
| 40 | |
| 41 | ///Constructor. k1: q_{k+1}, k: q_k, velKey: velocity variable depending on the chosen method, h: time step |
| 42 | PendulumFactor1(Key k1, Key k, Key velKey, double h, double mu = 1000.0) |
| 43 | : Base(noiseModel::Constrained::All(dim: 1, mu: std::abs(x: mu)), k1, k, velKey), h_(h) {} |
| 44 | |
| 45 | /// @return a deep copy of this factor |
| 46 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 47 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 48 | r: gtsam::NonlinearFactor::shared_ptr(new PendulumFactor1(*this))); } |
| 49 | |
| 50 | /** q_k + h*v - q_k1 = 0, with optional derivatives */ |
| 51 | Vector evaluateError(const double& qk1, const double& qk, const double& v, |
| 52 | OptionalMatrixType H1, OptionalMatrixType H2, |
| 53 | OptionalMatrixType H3) const override { |
| 54 | const size_t p = 1; |
| 55 | if (H1) *H1 = -Matrix::Identity(rows: p,cols: p); |
| 56 | if (H2) *H2 = Matrix::Identity(rows: p,cols: p); |
| 57 | if (H3) *H3 = Matrix::Identity(rows: p,cols: p)*h_; |
| 58 | return (Vector(1) << qk+v*h_-qk1).finished(); |
| 59 | } |
| 60 | |
| 61 | }; // \PendulumFactor1 |
| 62 | |
| 63 | |
| 64 | //************************************************************************* |
| 65 | /** |
| 66 | * This class implements the second constraint the |
| 67 | * - For explicit Euler method: v_{k+1} = v_k - h*g/L*sin(q_k) |
| 68 | * - For implicit Euler method: v_{k+1} = v_k - h*g/L*sin(q_{k+1}) |
| 69 | * - For sympletic Euler method: v_{k+1} = v_k - h*g/L*sin(q_k) |
| 70 | */ |
| 71 | class PendulumFactor2: public NoiseModelFactorN<double, double, double> { |
| 72 | public: |
| 73 | |
| 74 | protected: |
| 75 | typedef NoiseModelFactorN<double, double, double> Base; |
| 76 | |
| 77 | /** default constructor to allow for serialization */ |
| 78 | PendulumFactor2() {} |
| 79 | |
| 80 | double h_; |
| 81 | double g_; |
| 82 | double r_; |
| 83 | |
| 84 | public: |
| 85 | |
| 86 | // Provide access to the Matrix& version of evaluateError: |
| 87 | using Base::evaluateError; |
| 88 | |
| 89 | typedef std::shared_ptr<PendulumFactor2 > shared_ptr; |
| 90 | |
| 91 | ///Constructor. vk1: v_{k+1}, vk: v_k, qkey: q's key depending on the chosen method, h: time step |
| 92 | PendulumFactor2(Key vk1, Key vk, Key qkey, double h, double r = 1.0, double g = 9.81, double mu = 1000.0) |
| 93 | : Base(noiseModel::Constrained::All(dim: 1, mu: std::abs(x: mu)), vk1, vk, qkey), h_(h), g_(g), r_(r) {} |
| 94 | |
| 95 | /// @return a deep copy of this factor |
| 96 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 97 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 98 | r: gtsam::NonlinearFactor::shared_ptr(new PendulumFactor2(*this))); } |
| 99 | |
| 100 | /** v_k - h*g/L*sin(q) - v_k1 = 0, with optional derivatives */ |
| 101 | Vector evaluateError(const double & vk1, const double & vk, const double & q, |
| 102 | OptionalMatrixType H1, OptionalMatrixType H2, |
| 103 | OptionalMatrixType H3) const override { |
| 104 | const size_t p = 1; |
| 105 | if (H1) *H1 = -Matrix::Identity(rows: p,cols: p); |
| 106 | if (H2) *H2 = Matrix::Identity(rows: p,cols: p); |
| 107 | if (H3) *H3 = -Matrix::Identity(rows: p,cols: p)*h_*g_/r_*cos(x: q); |
| 108 | return (Vector(1) << vk - h_ * g_ / r_ * sin(x: q) - vk1).finished(); |
| 109 | } |
| 110 | |
| 111 | }; // \PendulumFactor2 |
| 112 | |
| 113 | |
| 114 | //************************************************************************* |
| 115 | /** |
| 116 | * This class implements the first position-momentum update rule |
| 117 | * \f$ p_k = -D_1 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)+mgrh(1-\alpha)\,\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) \f$ |
| 118 | * \f$ = (1/h)mr^2 (q_{k+1}-q_k) + mgrh(1-alpha) sin ((1-alpha)q_k+\alpha q_{k+1}) \f$ |
| 119 | */ |
| 120 | class PendulumFactorPk: public NoiseModelFactorN<double, double, double> { |
| 121 | public: |
| 122 | |
| 123 | protected: |
| 124 | typedef NoiseModelFactorN<double, double, double> Base; |
| 125 | |
| 126 | /** default constructor to allow for serialization */ |
| 127 | PendulumFactorPk() {} |
| 128 | |
| 129 | double h_; //! time step |
| 130 | double m_; //! mass |
| 131 | double r_; //! length |
| 132 | double g_; //! gravity |
| 133 | double alpha_; //! in [0,1], define the mid-point between [q_k,q_{k+1}] for approximation. The sympletic rule above can be obtained as a special case when alpha = 0. |
| 134 | |
| 135 | public: |
| 136 | |
| 137 | // Provide access to the Matrix& version of evaluateError: |
| 138 | using Base::evaluateError; |
| 139 | |
| 140 | typedef std::shared_ptr<PendulumFactorPk > shared_ptr; |
| 141 | |
| 142 | ///Constructor |
| 143 | PendulumFactorPk(Key pKey, Key qKey, Key qKey1, |
| 144 | double h, double m = 1.0, double r = 1.0, double g = 9.81, double alpha = 0.0, double mu = 1000.0) |
| 145 | : Base(noiseModel::Constrained::All(dim: 1, mu: std::abs(x: mu)), pKey, qKey, qKey1), |
| 146 | h_(h), m_(m), r_(r), g_(g), alpha_(alpha) {} |
| 147 | |
| 148 | /// @return a deep copy of this factor |
| 149 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 150 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 151 | r: gtsam::NonlinearFactor::shared_ptr(new PendulumFactorPk(*this))); } |
| 152 | |
| 153 | /** 1/h mr^2 (qk1-qk)+mgrh (1-a) sin((1-a)pk + a*pk1) - pk = 0, with optional derivatives */ |
| 154 | Vector evaluateError(const double & pk, const double & qk, const double & qk1, |
| 155 | OptionalMatrixType H1, OptionalMatrixType H2, |
| 156 | OptionalMatrixType H3) const override { |
| 157 | const size_t p = 1; |
| 158 | |
| 159 | double qmid = (1-alpha_)*qk + alpha_*qk1; |
| 160 | double mr2_h = 1/h_*m_*r_*r_; |
| 161 | double mgrh = m_*g_*r_*h_; |
| 162 | |
| 163 | if (H1) *H1 = -Matrix::Identity(rows: p,cols: p); |
| 164 | if (H2) *H2 = Matrix::Identity(rows: p,cols: p)*(-mr2_h + mgrh*(1-alpha_)*(1-alpha_)*cos(x: qmid)); |
| 165 | if (H3) *H3 = Matrix::Identity(rows: p,cols: p)*( mr2_h + mgrh*(1-alpha_)*(alpha_)*cos(x: qmid)); |
| 166 | |
| 167 | return (Vector(1) << mr2_h * (qk1 - qk) + mgrh * (1 - alpha_) * sin(x: qmid) - pk).finished(); |
| 168 | } |
| 169 | |
| 170 | }; // \PendulumFactorPk |
| 171 | |
| 172 | //************************************************************************* |
| 173 | /** |
| 174 | * This class implements the second position-momentum update rule |
| 175 | * \f$ p_k1 = D_2 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)-mgrh\alpha\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) \f$ |
| 176 | * \f$ = (1/h)mr^2 (q_{k+1}-q_k) - mgrh alpha sin ((1-alpha)q_k+\alpha q_{k+1}) \f$ |
| 177 | */ |
| 178 | class PendulumFactorPk1: public NoiseModelFactorN<double, double, double> { |
| 179 | public: |
| 180 | |
| 181 | protected: |
| 182 | typedef NoiseModelFactorN<double, double, double> Base; |
| 183 | |
| 184 | /** default constructor to allow for serialization */ |
| 185 | PendulumFactorPk1() {} |
| 186 | |
| 187 | double h_; //! time step |
| 188 | double m_; //! mass |
| 189 | double r_; //! length |
| 190 | double g_; //! gravity |
| 191 | double alpha_; //! in [0,1], define the mid-point between [q_k,q_{k+1}] for approximation. The sympletic rule above can be obtained as a special case when alpha = 0. |
| 192 | |
| 193 | public: |
| 194 | |
| 195 | // Provide access to the Matrix& version of evaluateError: |
| 196 | using Base::evaluateError; |
| 197 | |
| 198 | typedef std::shared_ptr<PendulumFactorPk1 > shared_ptr; |
| 199 | |
| 200 | ///Constructor |
| 201 | PendulumFactorPk1(Key pKey1, Key qKey, Key qKey1, |
| 202 | double h, double m = 1.0, double r = 1.0, double g = 9.81, double alpha = 0.0, double mu = 1000.0) |
| 203 | : Base(noiseModel::Constrained::All(dim: 1, mu: std::abs(x: mu)), pKey1, qKey, qKey1), |
| 204 | h_(h), m_(m), r_(r), g_(g), alpha_(alpha) {} |
| 205 | |
| 206 | /// @return a deep copy of this factor |
| 207 | gtsam::NonlinearFactor::shared_ptr clone() const override { |
| 208 | return std::static_pointer_cast<gtsam::NonlinearFactor>( |
| 209 | r: gtsam::NonlinearFactor::shared_ptr(new PendulumFactorPk1(*this))); } |
| 210 | |
| 211 | /** 1/h mr^2 (qk1-qk) - mgrh a sin((1-a)pk + a*pk1) - pk1 = 0, with optional derivatives */ |
| 212 | Vector evaluateError(const double & pk1, const double & qk, const double & qk1, |
| 213 | OptionalMatrixType H1, OptionalMatrixType H2, |
| 214 | OptionalMatrixType H3) const override { |
| 215 | const size_t p = 1; |
| 216 | |
| 217 | double qmid = (1-alpha_)*qk + alpha_*qk1; |
| 218 | double mr2_h = 1/h_*m_*r_*r_; |
| 219 | double mgrh = m_*g_*r_*h_; |
| 220 | |
| 221 | if (H1) *H1 = -Matrix::Identity(rows: p,cols: p); |
| 222 | if (H2) *H2 = Matrix::Identity(rows: p,cols: p)*(-mr2_h - mgrh*(1-alpha_)*alpha_*cos(x: qmid)); |
| 223 | if (H3) *H3 = Matrix::Identity(rows: p,cols: p)*( mr2_h - mgrh*alpha_*alpha_*cos(x: qmid)); |
| 224 | |
| 225 | return (Vector(1) << mr2_h * (qk1 - qk) - mgrh * alpha_ * sin(x: qmid) - pk1).finished(); |
| 226 | } |
| 227 | |
| 228 | }; // \PendulumFactorPk1 |
| 229 | |
| 230 | } |
| 231 | |