| 1 | /* |
| 2 | * CSP.cpp |
| 3 | * @brief Constraint Satisfaction Problem class |
| 4 | * @date Feb 6, 2012 |
| 5 | * @author Frank Dellaert |
| 6 | */ |
| 7 | |
| 8 | #include <gtsam/base/Testable.h> |
| 9 | #include <gtsam/discrete/DiscreteBayesNet.h> |
| 10 | #include <gtsam_unstable/discrete/CSP.h> |
| 11 | #include <gtsam_unstable/discrete/Domain.h> |
| 12 | |
| 13 | using namespace std; |
| 14 | |
| 15 | namespace gtsam { |
| 16 | |
| 17 | bool CSP::runArcConsistency(const VariableIndex& index, |
| 18 | Domains* domains) const { |
| 19 | bool changed = false; |
| 20 | |
| 21 | // iterate over all variables in the index |
| 22 | for (auto entry : index) { |
| 23 | // Get the variable's key and associated factors: |
| 24 | const Key key = entry.first; |
| 25 | const FactorIndices& factors = entry.second; |
| 26 | |
| 27 | // If this domain is already a singleton, we do nothing. |
| 28 | if (domains->at(k: key).isSingleton()) continue; |
| 29 | |
| 30 | // Otherwise, loop over all factors/constraints for variable with given key. |
| 31 | for (size_t f : factors) { |
| 32 | // If this factor is a constraint, call its ensureArcConsistency method: |
| 33 | auto constraint = std::dynamic_pointer_cast<Constraint>(r: (*this)[f]); |
| 34 | if (constraint) { |
| 35 | changed = constraint->ensureArcConsistency(j: key, domains) || changed; |
| 36 | } |
| 37 | } |
| 38 | } |
| 39 | return changed; |
| 40 | } |
| 41 | |
| 42 | // TODO(dellaert): This is AC1, which is inefficient as any change will cause |
| 43 | // the algorithm to revisit *all* variables again. Implement AC3. |
| 44 | Domains CSP::runArcConsistency(size_t cardinality, size_t maxIterations) const { |
| 45 | // Create VariableIndex |
| 46 | VariableIndex index(*this); |
| 47 | |
| 48 | // Initialize domains |
| 49 | Domains domains; |
| 50 | for (auto entry : index) { |
| 51 | const Key key = entry.first; |
| 52 | domains.emplace(args: key, args: DiscreteKey(key, cardinality)); |
| 53 | } |
| 54 | |
| 55 | // Iterate until convergence or not a single domain changed. |
| 56 | for (size_t it = 0; it < maxIterations; it++) { |
| 57 | bool changed = runArcConsistency(index, domains: &domains); |
| 58 | if (!changed) break; |
| 59 | } |
| 60 | return domains; |
| 61 | } |
| 62 | |
| 63 | CSP CSP::partiallyApply(const Domains& domains) const { |
| 64 | // Create new problem with all singleton variables removed |
| 65 | // We do this by adding simplifying all factors using partial application. |
| 66 | // TODO: create a new ordering as we go, to ensure a connected graph |
| 67 | // KeyOrdering ordering; |
| 68 | // vector<Index> dkeys; |
| 69 | CSP new_csp; |
| 70 | |
| 71 | // Add tightened domains as new factors: |
| 72 | for (auto key_domain : domains) { |
| 73 | new_csp.emplace_shared<Domain>(args&: key_domain.second); |
| 74 | } |
| 75 | |
| 76 | // Reduce all existing factors: |
| 77 | for (const DiscreteFactor::shared_ptr& f : factors_) { |
| 78 | auto constraint = std::dynamic_pointer_cast<Constraint>(r: f); |
| 79 | if (!constraint) |
| 80 | throw runtime_error("CSP:runArcConsistency: non-constraint factor" ); |
| 81 | Constraint::shared_ptr reduced = constraint->partiallyApply(domains); |
| 82 | if (reduced->size() > 1) { |
| 83 | new_csp.push_back(factor: reduced); |
| 84 | } |
| 85 | } |
| 86 | return new_csp; |
| 87 | } |
| 88 | } // namespace gtsam |
| 89 | |