| 1 | /* ---------------------------------------------------------------------------- |
| 2 | |
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation, |
| 4 | * Atlanta, Georgia 30332-0415 |
| 5 | * All Rights Reserved |
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list) |
| 7 | |
| 8 | * See LICENSE for the license information |
| 9 | |
| 10 | * -------------------------------------------------------------------------- */ |
| 11 | |
| 12 | /** |
| 13 | * @file DSF.h |
| 14 | * @date Mar 26, 2010 |
| 15 | * @author Kai Ni |
| 16 | * @brief An implementation of Disjoint set forests (see CLR page 446 and up) |
| 17 | */ |
| 18 | |
| 19 | #pragma once |
| 20 | |
| 21 | #include <gtsam_unstable/base/BTree.h> |
| 22 | #include <iostream> |
| 23 | #include <list> |
| 24 | #include <set> |
| 25 | #include <map> |
| 26 | |
| 27 | namespace gtsam { |
| 28 | |
| 29 | /** |
| 30 | * Disjoint Set Forest class |
| 31 | * |
| 32 | * Quoting from CLR: A disjoint-set data structure maintains a collection |
| 33 | * S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by |
| 34 | * a representative, which is some member of the set. |
| 35 | * |
| 36 | * @ingroup base |
| 37 | */ |
| 38 | template<class KEY> |
| 39 | class DSF: protected BTree<KEY, KEY> { |
| 40 | |
| 41 | public: |
| 42 | typedef DSF<KEY> Self; |
| 43 | typedef std::set<KEY> Set; |
| 44 | typedef BTree<KEY, KEY> Tree; |
| 45 | typedef std::pair<KEY, KEY> KeyLabel; |
| 46 | |
| 47 | // constructor |
| 48 | DSF() : |
| 49 | Tree() { |
| 50 | } |
| 51 | |
| 52 | // constructor |
| 53 | DSF(const Tree& tree) : |
| 54 | Tree(tree) { |
| 55 | } |
| 56 | |
| 57 | // constructor with a list of unconnected keys |
| 58 | DSF(const std::list<KEY>& keys) : |
| 59 | Tree() { |
| 60 | for(const KEY& key: keys) |
| 61 | *this = this->add(key, key); |
| 62 | } |
| 63 | |
| 64 | // constructor with a set of unconnected keys |
| 65 | DSF(const std::set<KEY>& keys) : |
| 66 | Tree() { |
| 67 | for(const KEY& key: keys) |
| 68 | *this = this->add(key, key); |
| 69 | } |
| 70 | |
| 71 | // create a new singleton, does nothing if already exists |
| 72 | Self makeSet(const KEY& key) const { |
| 73 | if (this->mem(key)) |
| 74 | return *this; |
| 75 | else |
| 76 | return this->add(key, key); |
| 77 | } |
| 78 | |
| 79 | // create a new singleton, does nothing if already exists |
| 80 | void makeSetInPlace(const KEY& key) { |
| 81 | if (!this->mem(key)) |
| 82 | *this = this->add(key, key); |
| 83 | } |
| 84 | |
| 85 | // find the label of the set in which {key} lives |
| 86 | KEY findSet(const KEY& key) const { |
| 87 | KEY parent = this->find(key); |
| 88 | return parent == key ? key : findSet(key: parent); |
| 89 | } |
| 90 | |
| 91 | // return a new DSF where x and y are in the same set. No path compression |
| 92 | Self makeUnion(const KEY& key1, const KEY& key2) const { |
| 93 | DSF<KEY> copy = *this; |
| 94 | copy.makeUnionInPlace(key1,key2); |
| 95 | return copy; |
| 96 | } |
| 97 | |
| 98 | // the in-place version of makeUnion |
| 99 | void makeUnionInPlace(const KEY& key1, const KEY& key2) { |
| 100 | *this = this->add(findSet_(key: key2), findSet_(key: key1)); |
| 101 | } |
| 102 | |
| 103 | // create a new singleton with two connected keys |
| 104 | Self makePair(const KEY& key1, const KEY& key2) const { |
| 105 | return makeSet(key: key1).makeSet(key2).makeUnion(key1, key2); |
| 106 | } |
| 107 | |
| 108 | // create a new singleton with a list of fully connected keys |
| 109 | Self makeList(const std::list<KEY>& keys) const { |
| 110 | Self t = *this; |
| 111 | for(const KEY& key: keys) |
| 112 | t = t.makePair(key, keys.front()); |
| 113 | return t; |
| 114 | } |
| 115 | |
| 116 | // return a dsf in which all find_set operations will be O(1) due to path compression. |
| 117 | DSF flatten() const { |
| 118 | DSF t = *this; |
| 119 | for(const KeyLabel& pair: (Tree)t) |
| 120 | t.findSet_(pair.first); |
| 121 | return t; |
| 122 | } |
| 123 | |
| 124 | // maps f over all keys, must be invertible |
| 125 | DSF map(std::function<KEY(const KEY&)> func) const { |
| 126 | DSF t; |
| 127 | for(const KeyLabel& pair: (Tree)*this) |
| 128 | t = t.add(func(pair.first), func(pair.second)); |
| 129 | return t; |
| 130 | } |
| 131 | |
| 132 | // return the number of sets |
| 133 | size_t numSets() const { |
| 134 | size_t num = 0; |
| 135 | for(const KeyLabel& pair: (Tree)*this) |
| 136 | if (pair.first == pair.second) |
| 137 | num++; |
| 138 | return num; |
| 139 | } |
| 140 | |
| 141 | // return the numer of keys |
| 142 | size_t size() const { |
| 143 | return Tree::size(); |
| 144 | } |
| 145 | |
| 146 | // return all sets, i.e. a partition of all elements |
| 147 | std::map<KEY, Set> sets() const { |
| 148 | std::map<KEY, Set> sets; |
| 149 | for(const KeyLabel& pair: (Tree)*this) |
| 150 | sets[findSet(key: pair.second)].insert(pair.first); |
| 151 | return sets; |
| 152 | } |
| 153 | |
| 154 | // return a partition of the given elements {keys} |
| 155 | std::map<KEY, Set> partition(const std::list<KEY>& keys) const { |
| 156 | std::map<KEY, Set> partitions; |
| 157 | for(const KEY& key: keys) |
| 158 | partitions[findSet(key)].insert(key); |
| 159 | return partitions; |
| 160 | } |
| 161 | |
| 162 | // get the nodes in the tree with the given label |
| 163 | Set set(const KEY& label) const { |
| 164 | Set set; |
| 165 | for(const KeyLabel& pair: (Tree)*this) { |
| 166 | if (pair.second == label || findSet(key: pair.second) == label) |
| 167 | set.insert(pair.first); |
| 168 | } |
| 169 | return set; |
| 170 | } |
| 171 | |
| 172 | /** equality */ |
| 173 | bool operator==(const Self& t) const { |
| 174 | return (Tree) *this == (Tree) t; |
| 175 | } |
| 176 | |
| 177 | /** inequality */ |
| 178 | bool operator!=(const Self& t) const { |
| 179 | return (Tree) *this != (Tree) t; |
| 180 | } |
| 181 | |
| 182 | // print the object |
| 183 | void print(const std::string& name = "DSF" ) const { |
| 184 | std::cout << name << std::endl; |
| 185 | for(const KeyLabel& pair: (Tree)*this) |
| 186 | std::cout << (std::string) pair.first << " " << (std::string) pair.second |
| 187 | << std::endl; |
| 188 | } |
| 189 | |
| 190 | protected: |
| 191 | |
| 192 | /** |
| 193 | * same as findSet except with path compression: After we have traversed the path to |
| 194 | * the root, each parent pointer is made to directly point to it |
| 195 | */ |
| 196 | KEY findSet_(const KEY& key) { |
| 197 | KEY parent = this->find(key); |
| 198 | if (parent == key) |
| 199 | return parent; |
| 200 | else { |
| 201 | KEY label = findSet_(key: parent); |
| 202 | *this = this->add(key, label); |
| 203 | return label; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | }; |
| 208 | |
| 209 | // shortcuts |
| 210 | typedef DSF<int> DSFInt; |
| 211 | |
| 212 | } // namespace gtsam |
| 213 | |