| 1 | /* ----------------------------------------------------------------------------
|
| 2 |
|
| 3 | * GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
| 4 | * Atlanta, Georgia 30332-0415
|
| 5 | * All Rights Reserved
|
| 6 | * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
| 7 |
|
| 8 | * See LICENSE for the license information
|
| 9 |
|
| 10 | * -------------------------------------------------------------------------- */
|
| 11 |
|
| 12 | /**
|
| 13 | * @file GEKF_Rot3Example.cpp
|
| 14 | * @brief Left‐Invariant EKF on SO(3) with state‐dependent pitch/roll control
|
| 15 | * and a single magnetometer update.
|
| 16 | * @date April 25, 2025
|
| 17 | * @authors Scott Baker, Matt Kielo, Frank Dellaert
|
| 18 | */
|
| 19 |
|
| 20 | #include <gtsam/base/Matrix.h>
|
| 21 | #include <gtsam/base/OptionalJacobian.h>
|
| 22 | #include <gtsam/geometry/Rot3.h>
|
| 23 | #include <gtsam/navigation/LieGroupEKF.h>
|
| 24 |
|
| 25 | #include <iostream>
|
| 26 |
|
| 27 | using namespace std;
|
| 28 | using namespace gtsam;
|
| 29 |
|
| 30 | // --- 1) Closed‐loop dynamics f(X): xi = –k·[φx,φy,0], H = ∂xi/∂φ·Dφ ---
|
| 31 | static constexpr double k = 0.5;
|
| 32 | Vector3 dynamicsSO3(const Rot3& X, OptionalJacobian<3, 3> H = {}) {
|
| 33 | // φ = Logmap(R), Dφ = ∂φ/∂δR
|
| 34 | Matrix3 D_phi;
|
| 35 | Vector3 phi = Rot3::Logmap(R: X, H: D_phi);
|
| 36 | // zero out yaw
|
| 37 | phi[2] = 0.0;
|
| 38 | D_phi.row(i: 2).setZero();
|
| 39 |
|
| 40 | if (H) *H = -k * D_phi; // ∂(–kφ)/∂δR
|
| 41 | return -k * phi; // xi ∈ 𝔰𝔬(3)
|
| 42 | }
|
| 43 |
|
| 44 | // --- 2) Magnetometer model: z = R⁻¹ m, H = –[z]_× ---
|
| 45 | static const Vector3 m_world(0, 0, -1);
|
| 46 | Vector3 h_mag(const Rot3& X, OptionalJacobian<3, 3> H = {}) {
|
| 47 | Vector3 z = X.inverse().rotate(p: m_world);
|
| 48 | if (H) *H = -skewSymmetric(w: z);
|
| 49 | return z;
|
| 50 | }
|
| 51 |
|
| 52 | int main() {
|
| 53 | // Initial estimate (identity) and covariance
|
| 54 | const Rot3 R0 = Rot3::RzRyRx(x: 0.1, y: -0.2, z: 0.3);
|
| 55 | const Matrix3 P0 = Matrix3::Identity() * 0.1;
|
| 56 | LieGroupEKF<Rot3> ekf(R0, P0);
|
| 57 |
|
| 58 | // Timestep, process noise, measurement noise
|
| 59 | double dt = 0.1;
|
| 60 | Matrix3 Q = Matrix3::Identity() * 0.01;
|
| 61 | Matrix3 Rm = Matrix3::Identity() * 0.05;
|
| 62 |
|
| 63 | cout << "=== Init ===\nR:\n"
|
| 64 | << ekf.state().matrix() << "\nP:\n"
|
| 65 | << ekf.covariance() << "\n\n" ;
|
| 66 |
|
| 67 | // Predict using state‐dependent f
|
| 68 | ekf.predict(f&: dynamicsSO3, dt, Q);
|
| 69 | cout << "--- After predict ---\nR:\n" << ekf.state().matrix() << "\n\n" ;
|
| 70 |
|
| 71 | // Magnetometer measurement = body‐frame reading of m_world
|
| 72 | Vector3 z = h_mag(X: R0);
|
| 73 | ekf.update(h&: h_mag, z, R: Rm);
|
| 74 | cout << "--- After update ---\nR:\n" << ekf.state().matrix() << "\n" ;
|
| 75 |
|
| 76 | return 0;
|
| 77 | }
|
| 78 | |